Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== With known mean ==== For a set of [[i.i.d.]] normally distributed data points '''X''' of size ''n'' where each individual point ''x'' follows <math display=inline>x \sim \mathcal{N}(\mu, \sigma^2)</math> with known mean ΞΌ, the [[conjugate prior]] of the [[variance]] has an [[inverse gamma distribution]] or a [[scaled inverse chi-squared distribution]]. The two are equivalent except for having different [[parameter]]izations. Although the inverse gamma is more commonly used, we use the scaled inverse chi-squared for the sake of convenience. The prior for Ο<sup>2</sup> is as follows: <math display=block>p(\sigma^2\mid\nu_0,\sigma_0^2) = \frac{(\sigma_0^2\frac{\nu_0}{2})^{\nu_0/2}}{\Gamma\left(\frac{\nu_0}{2} \right)}~\frac{\exp\left[ \frac{-\nu_0 \sigma_0^2}{2 \sigma^2}\right]}{(\sigma^2)^{1+\frac{\nu_0}{2}}} \propto \frac{\exp\left[ \frac{-\nu_0 \sigma_0^2}{2 \sigma^2}\right]}{(\sigma^2)^{1+\frac{\nu_0}{2}}}</math> The [[likelihood function]] from above, written in terms of the variance, is: <math display=block>\begin{align} p(\mathbf{X}\mid\mu,\sigma^2) &= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i-\mu)^2\right] \\ &= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left[-\frac{S}{2\sigma^2}\right] \end{align}</math> where <math display=block>S = \sum_{i=1}^n (x_i-\mu)^2.</math> Then: <math display=block>\begin{align} p(\sigma^2\mid\mathbf{X}) &\propto p(\mathbf{X}\mid\sigma^2) p(\sigma^2) \\ &= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left[-\frac{S}{2\sigma^2}\right] \frac{(\sigma_0^2\frac{\nu_0}{2})^{\frac{\nu_0}{2}}}{\Gamma\left(\frac{\nu_0}{2} \right)}~\frac{\exp\left[ \frac{-\nu_0 \sigma_0^2}{2 \sigma^2}\right]}{(\sigma^2)^{1+\frac{\nu_0}{2}}} \\ &\propto \left(\frac{1}{\sigma^2}\right)^{n/2} \frac{1}{(\sigma^2)^{1+\frac{\nu_0}{2}}} \exp\left[-\frac{S}{2\sigma^2} + \frac{-\nu_0 \sigma_0^2}{2 \sigma^2}\right] \\ &= \frac{1}{(\sigma^2)^{1+\frac{\nu_0+n}{2}}} \exp\left[-\frac{\nu_0 \sigma_0^2 + S}{2\sigma^2}\right] \end{align}</math> The above is also a scaled inverse chi-squared distribution where <math display=block>\begin{align} \nu_0' &= \nu_0 + n \\ \nu_0'{\sigma_0^2}' &= \nu_0 \sigma_0^2 + \sum_{i=1}^n (x_i-\mu)^2 \end{align}</math> or equivalently <math display=block>\begin{align} \nu_0' &= \nu_0 + n \\ {\sigma_0^2}' &= \frac{\nu_0 \sigma_0^2 + \sum_{i=1}^n (x_i-\mu)^2}{\nu_0+n} \end{align}</math> Reparameterizing in terms of an [[inverse gamma distribution]], the result is: <math display=block>\begin{align} \alpha' &= \alpha + \frac{n}{2} \\ \beta' &= \beta + \frac{\sum_{i=1}^n (x_i-\mu)^2}{2} \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)