Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Flash memory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Flash scalability== {{See also|List of semiconductor scale examples|Moore's law}} Due to its relatively simple structure and high demand for higher capacity, NAND flash memory is the most aggressively [[List of semiconductor scale examples|scaled technology]] among [[electronic devices]]. The heavy competition among the top few manufacturers only adds to the aggressiveness in shrinking the [[floating-gate MOSFET]] design rule or process technology node.<ref name=NEA/> While the expected shrink timeline is a factor of two every three years per the original version of [[Moore's law]], this has recently been accelerated in the case of NAND flash to a factor of two every two years. <!-- In November 2012, Samsung started production of 19 nm NAND chips (marketed them as "10 nm class", explained as something between 10 and 19 nm).<ref>{{cite news |url=http://www.anandtech.com/show/7173/samsung-ssd-840-evo-review-120gb-250gb-500gb-750gb-1tb-models-tested |title=Samsung SSD 840 EVO Review: 120GB, 250GB, 500GB, 750GB & 1TB Models Tested |last=Anand |first=Lal Shimpi |date=July 25, 2013 |publisher=AnandTech |access-date=9 January 2015}} "''Samsung calls its latest NAND process 10nm-class or 1x-nm, which can refer to feature sizes anywhere from 10nm to 19nm but we've also heard it referred to as 19nm TLC.''"</ref><ref name="objectiveanalysis-firstvnand">{{Cite web |last=Handy |first=Jim |date=July 2014 |title=Samsung samples 3D NAND SSD |url=https://objective-analysis.com/uploads/2014-07-01_Objective_Analysis_Alert_-_Samsung_Samples_3D_NAND_SSD.pdf |url-status=dead |archive-url=https://web.archive.org/web/20150109085810/https://objective-analysis.com/uploads/2014-07-01_Objective_Analysis_Alert_-_Samsung_Samples_3D_NAND_SSD.pdf |archive-date=9 January 2015 |access-date=9 January 2015 |publisher=ObjectiveAnalysis |quote=..Samsung introduced its 19nm NAND by calling it a “10nm-class” product. Once again, the press misunderstood and broadcast to the world that Samsung was ahead of all of its competitors }}</ref><ref name="pcworld-20130725">{{Cite magazine |last=Jacobi |first=Jon L. |last2=Brown |first2=Michael |date=25 July 2013 |title=Samsung's 840 EVO SSD family: Fast, large, and in charge |url=http://www.pcworld.com/article/2045163/samsungs-840-evo-ssd-family-fast-large-and-in-charge.html |url-status=live |magazine=[[PC World]] |archive-url=https://web.archive.org/web/20230329063848/https://www.pcworld.com/article/453057/samsungs-840-evo-ssd-family-fast-large-and-in-charge.html |archive-date=29 March 2023 |access-date=9 January 2015 |quote=the 19nm manufacturing process used to produce the NAND. Samsung for some reason is calling this 10nm-class, or 1x NAND, but they assured us that it's 19nm. }}</ref><ref name="eetimes-20121120">{{Cite news |last=Clarke |first=Peter |date=20 November 2012 |title=Samsung takes NAND memory below 20-nm |work=[[EE Times]] |url=https://www.eetimes.com/Samsung-takes-NAND-memory-below-20-nm/ |url-status=live |access-date=21 December 2012 |archive-url=https://web.archive.org/web/20220206115823/https://www.eetimes.com/samsung-takes-nand-memory-below-20-nm/ |archive-date=6 February 2022 }}</ref> --> {{clear}} {| class="wikitable" |- ! [[International Technology Roadmap for Semiconductors|ITRS]] or company !! 2010 !! 2011 !! 2012 !! 2013 !! 2014 !! 2015 !! 2016 !! 2017 !! 2018 |- | ITRS Flash Roadmap 2011<ref name=ti-roadmap2013-04>{{cite web|url=http://www.techinsights.com/uploadedFiles/Public_Website/Content_-_Primary/Marketing/2013/Nand_Flash_Roadmap/NAND-Flash-Roadmap.ppt |title=Technology Roadmap for NAND Flash Memory |date=April 2013 |publisher=techinsights |access-date=9 January 2015 |url-status=dead |archive-url=https://web.archive.org/web/20150109095122/http://www.techinsights.com/uploadedFiles/Public_Website/Content_-_Primary/Marketing/2013/Nand_Flash_Roadmap/NAND-Flash-Roadmap.ppt |archive-date=9 January 2015 }}</ref> || [[32 nm]] || [[22 nm]] || 20 nm || 18 nm || [[14 nm process|16 nm]]|| || || || |- | Updated ITRS Flash Roadmap<ref name=ti-roadmap2014-04>{{cite web|url=http://www.techinsights.com/uploadedFiles/NAND-Flash-Roadmap-2014.ppt |title=Technology Roadmap for NAND Flash Memory |date=April 2014 |publisher=techinsights |access-date=9 January 2015 |url-status=dead |archive-url=https://web.archive.org/web/20150109095119/http://www.techinsights.com/uploadedFiles/NAND-Flash-Roadmap-2014.ppt |archive-date=9 January 2015 }}</ref> || || || || || 17 nm || 15 nm || [[14 nm]] || || |- | [[Samsung]]<ref name=ti-roadmap2013-04/><ref name=ti-roadmap2014-04/><ref name=ti-roadmap-2016>{{cite web |title=NAND Flash Memory Roadmap |url=http://www.techinsights.com/techservices/TechInsights-NAND-Flash-Roadmap-2016.pdf |website=TechInsights |date=June 2016 |access-date=25 June 2018 |archive-date=25 June 2018 |archive-url=https://web.archive.org/web/20180625075602/http://www.techinsights.com/techservices/TechInsights-NAND-Flash-Roadmap-2016.pdf |url-status=dead }}</ref><br />(Samsung 3D NAND)<ref name=ti-roadmap2014-04/> || 35–[[20 nm]]<ref name="samsung-history">{{cite web |title=History |url=https://www.samsung.com/us/aboutsamsung/company/history/ |website=[[Samsung Electronics]] |publisher=[[Samsung]] |access-date=19 June 2019}}</ref> || 27 nm || 21 nm <br /> ([[Multi-level cell|MLC]], [[Triple-level cell|TLC]]) || 19–16 nm <br /> 19–[[10 nm process|10 nm]] (MLC, TLC)<ref name="tomshardware">{{Cite news |last=Parrish |first=Kevin |date=11 April 2013 |title=Samsung Mass Producing 128Gb 3-bit MLC NAND Flash |work=[[Tom's Hardware]] |url=https://www.tomshardware.co.uk/NAND-128Gb-Mass-Production-3-bit-MLC,news-43458.html |url-status=dead |access-date=21 June 2019 |archive-url=https://web.archive.org/web/20190621175628/https://www.tomshardware.co.uk/NAND-128Gb-Mass-Production-3-bit-MLC,news-43458.html |archive-date=21 June 2019 }}</ref> || 19–10 nm<br />V-NAND (24L) || 16–10 nm<br />V-NAND (32L) || 16–10 nm || 12–10 nm || 12–10 nm |- | [[Micron Technology|Micron]], [[Intel]]<ref name=ti-roadmap2013-04/><ref name=ti-roadmap2014-04/><ref name=ti-roadmap-2016/> || 34–25 nm || 25 nm || 20 nm <br /> (MLC + HKMG) || 20 nm <br /> (TLC) || 16 nm || 16 nm<br />3D NAND || 16 nm<br />3D NAND || 12 nm<br />3D NAND || 12 nm<br />3D NAND |- | [[Toshiba]], [[Western Digital|WD]] ([[SanDisk]])<ref name=ti-roadmap2013-04/><ref name=ti-roadmap2014-04/><ref name=ti-roadmap-2016/> || 43–32 nm <br /> 24 nm (Toshiba)<ref>{{cite web|url=http://www.toshiba.co.jp/about/press/2010_08/pr3101.htm?from=RSS_PRESS&uid=20100831-1112e|title=Toshiba : News Release (31 Aug, 2010): Toshiba launches 24nm process NAND flash memory|website=Toshiba.co.jp}}</ref> || 24 nm || 19 nm <br /> (MLC, TLC) || || 15 nm || 15 nm<br />3D NAND || 15 nm<br />3D NAND || 12 nm <br /> 3D NAND || 12 nm <br /> 3D NAND |- | [[SK Hynix]]<ref name=ti-roadmap2013-04/><ref name=ti-roadmap2014-04/><ref name=ti-roadmap-2016/> || 46–35 nm || 26 nm || 20 nm (MLC) || || 16 nm || 16 nm || 16 nm || 12 nm || 12 nm |} As the [[MOSFET]] feature size of flash memory cells reaches the 15–16 nm minimum limit, further flash density increases will be driven by TLC (3 bits/cell) combined with vertical stacking of NAND memory planes. The decrease in endurance and increase in uncorrectable bit error rates that accompany feature size shrinking can be compensated by improved error correction mechanisms.<ref name="anandtech-20101202">{{Cite news |last=Shimpi |first=Anand Lal |date=2 December 2010 |title=Micron's ClearNAND: 25nm + ECC, Combats Increasing Error Rates |work=[[AnandTech]] |url=https://www.anandtech.com/show/4043/micron-announces-clearnand-25nm-with-ecc |url-status=live |access-date=2 December 2010 |archive-url=https://web.archive.org/web/20101203082325/http://www.anandtech.com/show/4043/micron-announces-clearnand-25nm-with-ecc |archive-date=3 December 2010 }}</ref> Even with these advances, it may be impossible to economically scale flash to smaller and smaller dimensions as the number of electron holding capacity reduces. Many promising new technologies (such as [[Ferroelectric RAM|FeRAM]], [[Magnetoresistive Random Access Memory|MRAM]], [[Programmable metallization cell|PMC]], [[Phase-change memory|PCM]], [[Resistive random-access memory|ReRAM]], and others) are under investigation and development as possible more scalable replacements for flash.<ref name="future">{{Cite conference |last1=Kim |first1=Kinam |last2=Koh |first2=Gwan-Hyeob |date=16 May 2004 |title=Future memory technology including emerging new memories |conference=24th International Conference on Microelectronics |location=Niš, Serbia |publisher=[[Institute of Electrical and Electronics Engineers]] |pages=377–384 |doi=10.1109/ICMEL.2004.1314646 |isbn=978-0-7803-8166-7 |s2cid=40985239 }}</ref> ===Timeline=== {{See also|Read-only memory#Timeline|Random-access memory#Timeline|Transistor count#Memory}} {| class="wikitable" ! Date of introduction !! Chip name !! Memory Package Capacity<br/>Megabits (Mb), Gigabits (Gb), Terabits (Tb) || Flash type || Cell type || Layers or<br/>Stacks of Layers || Manufacturer(s) || Process || Area || Ref |- | 1984 || ? || ? || NOR || SLC || 1 || Toshiba || ? || ? || <ref name="auto1"/> |- | 1985 || ? || 256 kb || NOR || SLC || 1 || Toshiba || 2,000 nm || ? || <ref name="stol">{{Cite web |title=Memory |url=http://maltiel-consulting.com/Semiconductor_technology_memory.html |url-status=live |archive-url=https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html |archive-date=2 November 2023 |access-date=25 June 2019 |website=STOL (Semiconductor Technology Online) }}</ref> |- | 1987 || ? || ? || NAND || SLC || 1 || Toshiba || ? || ? || <ref name=":0"/> |- | 1989 || ? || 1 Mb || NOR || SLC || 1 || Seeq, Intel || ? || ? || <ref name="stol"/> |- | || || 4 Mb || NAND || SLC || 1 || Toshiba || 1,000 nm || || |- | 1991 || ? || 16 Mb || NOR || SLC || 1 || Mitsubishi || 600 nm || ? || <ref name="stol"/> |- | 1993 || DD28F032SA || 32 Mb || NOR || SLC || 1 || Intel || ? || 280 mm² || <ref name="Intel-Product-Timeline">{{Cite web |date=July 2005 |title=A chronological list of Intel products. The products are sorted by date. |url=http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf |url-status=dead |archive-url=https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf |archive-date=9 August 2007 |access-date=31 July 2007 |publisher=[[Intel]] |work=Intel museum }}</ref><ref name="dd28f032sa-datasheet">{{Cite web |title=DD28F032SA Datasheet |url=https://pdf.datasheetcatalog.com/datasheet/Intel/mXyzzuqw.pdf |url-status=live |archive-url=https://web.archive.org/web/20231204175055/https://pdf.datasheetcatalog.com/datasheet/Intel/mXyzzuqw.pdf |archive-date=4 December 2023 |access-date=27 June 2019 |publisher=[[Intel]] }}</ref> |- | 1994 || ? || 64 Mb || NOR || SLC || 1 || NEC || 400 nm || ? || <ref name="stol"/> |- | 1995 || ? || 16 Mb || DINOR || SLC || 1 || Mitsubishi, Hitachi || ? || ? || |<ref name="stol"/><ref name="smithsonian-japan">{{Cite web |year=1996 |title=Japanese Company Profiles |url=http://smithsonianchips.si.edu/ice/cd/PROF96/JAPAN.PDF |url-status=dead |archive-url=https://web.archive.org/web/20230419065056/http://smithsonianchips.si.edu/ice/cd/PROF96/JAPAN.PDF |archive-date=19 April 2023 |access-date=27 June 2019 |publisher=Integrated Circuit Engineering Corporation |via=[[Smithsonian Institution]] }}</ref> |- | || || || NAND || SLC || 1 || Toshiba || ? || ? || <ref name="toshiba-19950302">{{Cite press release |date=2 March 1995 |title=Toshiba to Introduce Flash Memory Cards |url=https://www.global.toshiba/ww/news/corporate/1995/03/pr0201.html |url-status=live |archive-url=https://web.archive.org/web/20231106084148/https://www.global.toshiba/ww/news/corporate/1995/03/pr0201.html |archive-date=6 November 2023 |access-date=20 June 2019 |publisher=[[Toshiba]] |id=PR0201 |location=Tokyo }}</ref> |- | || || 32 Mb || NAND || SLC || 1 || Hitachi, Samsung, Toshiba || ? || ? || <ref name="stol"/> |- | || || 34 Mb || Serial || SLC || 1 || SanDisk || || || |- | 1996 || ? || 64 Mb || NAND || SLC || 1 || Hitachi, Mitsubishi || 400 nm || ? || <ref name="stol"/> |- | || || || || QLC || 1 || NEC || || || |- | || || 128 Mb || NAND || SLC || 1 || Samsung, Hitachi || ? || || |- | 1997 || ? || 32 Mb || NOR || SLC || 1 || Intel, Sharp || 400 nm || ? || <ref name="worldwideicmanuf">{{Cite web |year=1997 |title=Worldwide IC Manufacturers |url=http://smithsonianchips.si.edu/ice/cd/STATUS98/SEC02.PDF |url-status=dead |archive-url=https://web.archive.org/web/20230814162607/http://smithsonianchips.si.edu/ice/cd/STATUS98/SEC02.PDF |archive-date=14 August 2023 |access-date=10 July 2019 |publisher=Integrated Circuit Engineering Corporation |via=[[Smithsonian Institution]] }}</ref> |- | || || || NAND || SLC || 1 || AMD, Fujitsu || 350 nm || || |- | 1999 || ? || 256 Mb || NAND || SLC || 1 || Toshiba || 250 nm || ? || <ref name="stol"/> |- | || || || || MLC || 1 || Hitachi || 1 || || |- | 2000 || ? || 32 Mb || NOR || SLC || 1 || Toshiba || 250 nm || ? || <ref name="stol"/> |- | || || 64 Mb || NOR || QLC || 1 || STMicroelectronics || 180 nm || || |- | || || 512 Mb || NAND || SLC || 1 || Toshiba || ? || ? || <ref name="toshiba-20020909b">{{Cite press release |date=9 September 2002 |title=Toshiba announces 0.13 micron 1Gb monolithic NAND featuring large block size for improved write/erase speed performance |url=http://www.toshiba.com/taec/news/press_releases/2002/to-230.jsp |url-status=dead |archive-url=https://web.archive.org/web/20060311224004/http://www.toshiba.com/taec/news/press_releases/2002/to-230.jsp |archive-date=11 March 2006 |access-date=11 March 2006 |publisher=[[Toshiba]] }}</ref> |- | 2001 || ? || 512 Mb || NAND || MLC || 1 || Hitachi || ? || ? || <ref name="stol"/> |- | || || 1 Gibit || NAND || MLC || 1 || Samsung || || || |- | || || || || || 1 || Toshiba, SanDisk || 160 nm || ? || <ref name="toshiba-20011112">{{Cite press release |date=12 November 2001 |title=Toshiba and SanDisk introduce a one gigabit NAND flash memory chip, doubling capacity of future flash products |url=https://www.global.toshiba/ww/news/corporate/2001/11/pr1202.html |url-status=live |archive-url=https://web.archive.org/web/20230419132953/https://www.global.toshiba/ww/news/corporate/2001/11/pr1202.html |archive-date=19 April 2023 |access-date=20 June 2019 |publisher=[[Toshiba]] |id=pr1202 |location=Las Vegas, Nv. and Tokyo, Japan }}</ref> |- | 2002 || ? || 512 Mb || NROM || MLC || 1 || Saifun || 170 nm || ? || <ref name="stol"/> |- | || || 2 GB || NAND || SLC || 1 || Samsung, Toshiba || ? || ? || <ref name="samsung2000s">{{Cite web |title=History: Continuing the legacy 2000-2009 |url=https://semiconductor.samsung.com/about-us/history/ |url-status=live |archive-url=https://web.archive.org/web/20231201063417/https://semiconductor.samsung.com/about-us/history/ |archive-date=1 December 2023 |access-date=25 June 2019 |website=[[Samsung Semiconductor]] |publisher=[[Samsung]] }}</ref><ref name="toshiba-20020909">{{Cite press release |date=9 September 2002 |title=Toshiba announces 1 gigabyte CompactFlash™ card |url=http://www.toshiba.com/taec/news/press_releases/2002/to-231.jsp |url-status=dead |archive-url=https://web.archive.org/web/20060311212118/http://www.toshiba.com/taec/news/press_releases/2002/to-231.jsp |archive-date=11 March 2006 |access-date=11 March 2006 |publisher=[[Toshiba]] }}</ref> |- | 2003 || ? || 128 Mb || NOR || MLC || 1 || Intel || 130 nm || ? || <ref name="stol"/> |- | || || 1 GB || NAND || MLC || 1 || Hitachi || || || |- | 2004 || ? || 8 GB || NAND || SLC || 1 || Samsung || 60 nm || ? || <ref name="samsung2000s"/> |- | 2005 || ? || 16 GB || NAND || SLC || 1 || Samsung || 50 nm || ? || <ref name="samsung-history"/> |- | 2006 || ? || 32 GB || NAND || SLC || 1 || Samsung || 40 nm || || |- | Apr-07 || THGAM || 128 GB || Stacked NAND || SLC || || Toshiba || 56 nm || 252 mm² || <ref name="toshiba2007">{{Cite press release |date=17 April 2007 |title=Toshiba commercializes Industry's Highest Capacity Embedded NAND Flash Memory for Mobile Consumer Products |url=https://www.global.toshiba/ww/news/corporate/2007/04/pr1702.html |url-status=live |archive-url=https://web.archive.org/web/20220518042936/https://www.global.toshiba/ww/news/corporate/2007/04/pr1702.html |archive-date=18 May 2022 |access-date=23 November 2010 |publisher=[[Toshiba]] |id=PR1702 }}</ref> |- | Sep-07 || ? || 128 GB || Stacked NAND || SLC || || Hynix || ? || ? || <ref name="hynix2007">{{Cite news |date=5 September 2007 |title=Hynix Surprises NAND Chip Industry |work=[[The Korea Times]] |url=https://www.koreatimes.co.kr/www/news/biz/2007/09/123_9628.html |url-status=live |access-date=8 July 2019 |archive-url=https://web.archive.org/web/20231121145653/http://www.koreatimes.co.kr/www/news/biz/2007/09/123_9628.html |archive-date=21 November 2023 }}</ref> |- | 2008 || THGBM || 256 GB || Stacked NAND || SLC || || Toshiba || 43 nm || 353 mm² || <ref name="toshiba2008">{{Cite press release |date=7 August 2008 |title=Toshiba Launches the Largest Density Embedded NAND Flash Memory Devices |url=https://www.global.toshiba/ww/news/corporate/2008/08/pr0701.html |url-status=live |archive-url=https://web.archive.org/web/20231107222127/https://www.global.toshiba/ww/news/corporate/2008/08/pr0701.html |archive-date=7 November 2023 |access-date=21 June 2019 |publisher=[[Toshiba]] |id=PR0701 }}</ref> |- | 2009 || ? || 32 GB || NAND || TLC || || Toshiba || 32 nm || 113 mm² || <ref name="toshiba2009">{{Cite press release |date=11 February 2009 |title=Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology |url=http://www.toshiba.co.jp/about/press/2009_02/pr1102.htm |url-status=live |archive-url=https://web.archive.org/web/20230419145952/https://www.global.toshiba/ww/news/corporate/2009/02/pr1102.html |archive-date=19 April 2023 |access-date=21 June 2019 |publisher=[[Toshiba]] |id=PR1102 }}</ref> |- | || || 64 GB || NAND || QLC || || Toshiba, SanDisk || 43 nm || ? || <ref name="toshiba2009"/><ref name="toshiba-sd-2009">{{Cite news |date=13 October 2009 |title=SanDisk ships world's first memory cards with 64 gigabit X4 NAND flash |work=SlashGear |url=https://www.slashgear.com/sandisk-ships-worlds-first-memory-cards-with-64-gigabit-x4-nand-flash-1360217 |url-status=live |access-date=20 June 2019 |archive-url=https://web.archive.org/web/20230418183511/https://www.slashgear.com/sandisk-ships-worlds-first-memory-cards-with-64-gigabit-x4-nand-flash-1360217/ |archive-date=18 April 2023 }}</ref> |- | 2010 || ? || 64 GB || NAND || SLC || || Hynix || 20 nm || ? || <ref name="hynix2010s">{{cite web |title=History: 2010s |url=https://www.skhynix.com/eng/about/history2010.jsp |website=[[SK Hynix]] |access-date=8 July 2019 |archive-date=17 May 2021 |archive-url=https://web.archive.org/web/20210517040328/https://www.skhynix.com/eng/about/history2010.jsp |url-status=dead }}</ref> |- | || || || || TLC || || Samsung || 20 nm || ? || <ref name="samsung-history"/> |- | || THGBM2 || 1 Tb || Stacked NAND || QLC || || Toshiba || 32 nm || 374 mm² || <ref name="toshiba2010">{{Cite press release |date=17 June 2010 |title=Toshiba Launches Industry's Largest Embedded NAND Flash Memory Modules |url=https://www.global.toshiba/ww/news/corporate/2010/06/pr1701.html |url-status=live |archive-url=https://web.archive.org/web/20231106085036/https://www.global.toshiba/ww/news/corporate/2010/06/pr1701.html |archive-date=6 November 2023 |access-date=21 June 2019 |publisher=[[Toshiba]] |id=PR1701 }}</ref> |- | 2011 || KLMCG8GE4A || 512 GB || Stacked NAND || MLC || || Samsung || ? || 192 mm² || <ref name="samsung-emmc441">{{Cite web |date=December 2011 |title=e.MMC 4.41 Specification compatibility Rev 1.1 |url=https://z3d9b7u8.stackpathcdn.com/pdf-down/K/L/M/KLMAG2GE4A-A001-Samsung.pdf |url-status=live |archive-url=https://web.archive.org/web/20231204170418/https://z3d9b7u8.stackpathcdn.com/pdf-down/K/L/M/KLMAG2GE4A-A001-Samsung.pdf |archive-date=4 December 2023 |access-date=15 July 2019 |publisher=[[Samsung Electronics]] }}</ref> |- | 2013 || ? || ? || NAND || SLC || || SK Hynix || 16 nm || ? || <ref name="hynix2010s"/> |- | || || 128 GB || V-NAND || TLC || || Samsung || 10 nm || ? || |- | 2015 || ? || 256 GB || V-NAND || TLC || || Samsung || ? || ? || <ref name="tomshardware"/> |- | 2017 || eUFS 2.1 || 512 GB || V-NAND || TLC || 8 of 64 || Samsung || ? || ? || <ref name="anandtech-20171205" /> |- | || || 768 GB || V-NAND || QLC || || Toshiba || ? || ? || <ref name="toshiba-20170628">{{Cite press release |date=28 June 2017 |title=Toshiba Develops World's First 4-bit Per Cell QLC NAND Flash Memory |url=https://www.techpowerup.com/234729/toshiba-develops-worlds-first-4-bit-per-cell-qlc-nand-flash-memory |url-status=live |archive-url=https://web.archive.org/web/20231102131301/https://www.techpowerup.com/234729/toshiba-develops-worlds-first-4-bit-per-cell-qlc-nand-flash-memory |archive-date=2 November 2023 |access-date=20 June 2019 |publisher=[[Toshiba]] |via=TechPowerUp }}</ref> |- | || KLUFG8R1EM || 4 Tb || Stacked V-NAND || TLC || || Samsung || ? || 150 mm² || <ref name="anandtech-20171205" /> |- | 2018 || ? || 1 Tb || V-NAND || QLC || || Samsung || ? || ? || <ref name="anandtech-20180806">{{Cite news |last=Shilov |first=Anton |date=6 August 2018 |title=Samsung Starts Mass Production of QLC V-NAND-Based SSDs |work=[[AnandTech]] |url=https://www.anandtech.com/show/13170/samsung-starts-mass-production-of-qlc-vnandbased-ssds |url-status=live |access-date=23 June 2019 |archive-url=https://web.archive.org/web/20231102133017/https://www.anandtech.com/show/13170/samsung-starts-mass-production-of-qlc-vnandbased-ssds |archive-date=2 November 2023 }}</ref> |- | || || 1.33 Tb || V-NAND || QLC || || Toshiba || ? || 158 mm² || <ref name="engadget-20180720">{{Cite news |last=Dent |first=Steve |date=20 July 2018 |title=Toshiba's flash chips could boost SSD capacity by 500 percent |work=[[Engadget]] |url=https://www.engadget.com/2018/07/20/toshiba-flash-166-gb-per-chip/ |url-status=live |access-date=23 June 2019 |archive-url=https://web.archive.org/web/20231106203450/https://www.engadget.com/2018-07-20-toshiba-flash-166-gb-per-chip.html |archive-date=6 November 2023 }}</ref><ref name="eetimes-20190220">{{Cite news |last=McGrath |first=Dylan |date=20 February 2019 |title=Toshiba Claims Highest-Capacity NAND |work=[[EE Times]] |location=San Francisco |url=https://www.eetimes.com/document.asp?doc_id=1334344 |url-status=live |access-date=23 June 2019 |archive-url=https://web.archive.org/web/20230423012213/https://www.eetimes.com/toshiba-claims-highest-capacity-nand/ |archive-date=23 April 2023 }}</ref> |- | 2019 || ? || 512 GB || V-NAND || QLC || || Samsung || ? || ? || <ref name="electronicsweekly-samsung">{{Cite news |last=Manners |first=David |date=30 January 2019 |title=Samsung makes 1TB flash eUFS module |work=[[Electronics Weekly]] |url=https://www.electronicsweekly.com/news/business/samsung-makes-1tb-flash-module-2019-01/ |url-status=live |access-date=23 June 2019 |archive-url=https://web.archive.org/web/20230210114056/https://www.electronicsweekly.com/news/business/samsung-makes-1tb-flash-module-2019-01/ |archive-date=10 February 2023 }}</ref><ref name="anandtech-samsung-2018">{{Cite news |last=Tallis |first=Billy |date=17 October 2018 |title=Samsung Shares SSD Roadmap for QLC NAND And 96-layer 3D NAND |work=[[AnandTech]] |url=https://www.anandtech.com/show/13497/samsung-shares-ssd-roadmap-for-qlc-nand-and-96layer-3d-nand |url-status=live |access-date=27 June 2019 |archive-url=https://web.archive.org/web/20231106103853/https://www.anandtech.com/show/13497/samsung-shares-ssd-roadmap-for-qlc-nand-and-96layer-3d-nand |archive-date=6 November 2023 }}</ref> |- | || || 1 Tb || V-NAND || TLC || || SK Hynix || ? || ? || <ref name="anandtech-20190626">{{Cite news |last=Shilov |first=Anton |date=26 June 2019 |title=SK Hynix Starts Production of 128-Layer 4D NAND, 176-Layer Being Developed |work=[[AnandTech]] |url=https://www.anandtech.com/show/14589/sk-hynix-128-layer-4d-nand |url-status=live |access-date=8 July 2019 |archive-url=https://web.archive.org/web/20230622221123/https://www.anandtech.com/show/14589/sk-hynix-128-layer-4d-nand |archive-date=22 June 2023 }}</ref> |- | || eUFS 2.1 || 1 Tb || Stacked V-NAND<ref name="zdnet-20190129">{{Cite news |last=Mu-Hyun |first=Cho |title=Samsung produces 1TB eUFS memory for smartphones |work=[[ZDNet]] |url=https://www.zdnet.com/article/samsung-produces-1tb-eufs-memory-for-smartphones/ |url-status=live |archive-url=https://web.archive.org/web/20231102133634/https://www.zdnet.com/article/samsung-produces-1tb-eufs-memory-for-smartphones/ |archive-date=2 November 2023 }}</ref> || QLC || 16 of 64 || Samsung || ? || 150 mm² || <ref name="electronicsweekly-samsung" /><ref name="anandtech-samsung-2018" /><ref name="samsung-20190130">{{Cite press release |date=30 January 2019 |title=Samsung Breaks Terabyte Threshold for Smartphone Storage with Industry's First 1TB Embedded Universal Flash Storage |url=https://news.samsung.com/global/samsung-breaks-terabyte-threshold-for-smartphone-storage-with-industrys-first-1tb-embedded-universal-flash-storage |url-status=live |archive-url=https://web.archive.org/web/20231130040907/https://news.samsung.com/global/samsung-breaks-terabyte-threshold-for-smartphone-storage-with-industrys-first-1tb-embedded-universal-flash-storage |archive-date=30 November 2023 |access-date=13 July 2019 |publisher=[[Samsung]] }}</ref> |- | 2023 || eUFS 4.0 || 8 Tb || 3D NAND || QLC || 232 || Micron || ? || ? || <ref name="ufs4-infographic">{{Cite web |year=2023 |title=UFS 4.0 Infographic |url=https://media-www.micron.com/-/media/client/global/images/in_line-images/products/managed-nand/ufs-4_0/ufs-4-infographic.pdf |url-status=live |archive-url=https://web.archive.org/web/20231029022836/https://media-www.micron.com/-/media/client/global/images/in_line-images/products/managed-nand/ufs-4_0/ufs-4-infographic.pdf |archive-date=29 October 2023 |publisher=[[Micron]] }}</ref> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)