Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
First-order logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== * {{Citation |last=Rautenberg |first=Wolfgang |author-link=Wolfgang Rautenberg |doi=10.1007/978-1-4419-1221-3 |title=A Concise Introduction to Mathematical Logic |publisher=[[Springer Science+Business Media]] |location=[[New York City|New York, NY]] |edition=3rd |isbn=978-1-4419-1220-6 |year=2010 }} * [[Peter B. Andrews|Andrews, Peter B.]] (2002); ''[https://books.google.com/books?id=nV4zAsWAvT0C&q=%22first-order+logic%22 An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof]'', 2nd ed., Berlin: Kluwer Academic Publishers. Available from Springer. * Avigad, Jeremy; Donnelly, Kevin; Gray, David; and Raff, Paul (2007); "A formally verified proof of the prime number theorem", ''ACM Transactions on Computational Logic'', vol. 9 no. 1 {{doi|10.1145/1297658.1297660}} * {{Cite book |author-link=Jon Barwise |last=Barwise |first=Jon |date=1977 |chapter=An Introduction to First-Order Logic|chapter-url=https://books.google.com/books?id=b0Fvrw9tBcMC&pg=PA5 |editor1-last=Barwise |editor1-first=Jon |title=Handbook of Mathematical Logic |publisher=North-Holland |location=Amsterdam, NL |series=Studies in Logic and the Foundations of Mathematics |isbn=978-0-444-86388-1 |publication-date=1982 }} * {{cite book |last1=Monk |first1=J. Donald |title=Mathematical Logic |date=1976 |publisher=Springer New York |location=New York, NY |doi=10.1007/978-1-4684-9452-5 |isbn=978-1-4684-9454-9 |url=https://doi.org/10.1007/978-1-4684-9452-5}} * Barwise, Jon; and [[John Etchemendy|Etchemendy, John]] (2000); ''Language Proof and Logic'', Stanford, CA: CSLI Publications (Distributed by the University of Chicago Press) * [[Józef Maria Bocheński|Bocheński, Józef Maria]] (2007); ''A Précis of Mathematical Logic'', Dordrecht, NL: D. Reidel, translated from the French and German editions by Otto Bird * Ferreirós, José (2001); [http://jstor.org/stable/2687794 ''The Road to Modern Logic — An Interpretation''], Bulletin of Symbolic Logic, Volume 7, Issue 4, 2001, pp. 441–484, {{doi|10.2307/2687794}}, {{JSTOR|2687794}} * {{Citation |author-link=L. T. F. Gamut |last=Gamut |first=L. T. F. |date=1991 |title=Logic, Language, and Meaning, Volume 2: Intensional Logic and Logical Grammar |location=Chicago, Illinois |publisher=University of Chicago Press |isbn=0-226-28088-8}} * [[David Hilbert|Hilbert, David]]; and [[Wilhelm Ackermann|Ackermann, Wilhelm]] (1950); ''[[Principles of Mathematical Logic]]'', Chelsea (English translation of ''Grundzüge der theoretischen Logik'', 1928 German first edition) * [[Wilfrid Hodges|Hodges, Wilfrid]] (2001); "Classical Logic I: First-Order Logic", in Goble, Lou (ed.); ''The Blackwell Guide to Philosophical Logic'', Blackwell * [[Heinz-Dieter Ebbinghaus|Ebbinghaus, Heinz-Dieter]]; Flum, Jörg; and Thomas, Wolfgang (1994); [https://books.google.com/books?id=4sbSBwAAQBAJ&printsec=frontcover&hl=iw&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false|''Mathematical Logic''], [[Undergraduate Texts in Mathematics]], Berlin, DE/New York, NY: [[Springer-Verlag]], Second Edition, {{ISBN|978-0-387-94258-2}} * Tarski, Alfred and Givant, Steven (1987); ''A Formalization of Set Theory without Variables''. Vol.41 of American Mathematical Society colloquium publications, Providence RI: American Mathematical Society, {{ISBN|978-0821810415}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)