Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Example: Spanning trees of fans and convolutions of convolutions==== A ''fan of order {{mvar|n}}'' is defined to be a graph on the vertices {{math|{0, 1, ..., ''n''}<nowiki/>}} with {{math|2''n'' − 1}} edges connected according to the following rules: Vertex 0 is connected by a single edge to each of the other {{mvar|n}} vertices, and vertex <math>k</math> is connected by a single edge to the next vertex {{math|''k'' + 1}} for all {{math|1 ≤ ''k'' < ''n''}}.<ref>{{harvnb|Graham|Knuth|Patashnik|1994|loc=Example 6 in §7.3}} for another method and the complete setup of this problem using generating functions. This more "convoluted" approach is given in Section 7.5 of the same reference.</ref> There is one fan of order one, three fans of order two, eight fans of order three, and so on. A [[spanning tree]] is a subgraph of a graph which contains all of the original vertices and which contains enough edges to make this subgraph connected, but not so many edges that there is a cycle in the subgraph. We ask how many spanning trees {{math|''f<sub>n</sub>''}} of a fan of order {{mvar|n}} are possible for each {{math|''n'' ≥ 1}}. As an observation, we may approach the question by counting the number of ways to join adjacent sets of vertices. For example, when {{math|''n'' {{=}} 4}}, we have that {{math|''f''<sub>4</sub> {{=}} 4 + 3 · 1 + 2 · 2 + 1 · 3 + 2 · 1 · 1 + 1 · 2 · 1 + 1 · 1 · 2 + 1 · 1 · 1 · 1 {{=}} 21}}, which is a sum over the {{mvar|m}}-fold convolutions of the sequence {{math|''g<sub>n</sub>'' {{=}} ''n'' {{=}} [''z<sup>n</sup>''] {{sfrac|''z''|(1 − ''z'')<sup>2</sup>}}}} for {{math|''m'' ≔ 1, 2, 3, 4}}. More generally, we may write a formula for this sequence as <math display="block">f_n = \sum_{m > 0} \sum_{\scriptstyle k_1+k_2+\cdots+k_m=n\atop\scriptstyle k_1, k_2, \ldots,k_m > 0} g_{k_1} g_{k_2} \cdots g_{k_m}\,, </math> from which we see that the ordinary generating function for this sequence is given by the next sum of convolutions as <math display="block">F(z) = G(z) + G(z)^2 + G(z)^3 + \cdots = \frac{G(z)}{1-G(z)} = \frac{z}{(1-z)^2-z} = \frac{z}{1-3z+z^2}\,,</math> from which we are able to extract an exact formula for the sequence by taking the [[partial fraction expansion]] of the last generating function.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)