Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Magic square
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Multiplicative magic squares of complex numbers=== Still using [[Ali Skalli]]'s non iterative method, it is possible to produce an infinity of multiplicative magic squares of [[complex numbers]]<ref>"[http://sites.google.com/site/aliskalligvaen/home-page/-multiplicative-of-complex-numbers-8x8 8x8 multiplicative magic square of complex numbers]" Ali Skalli's magic squares and magic cubes</ref> belonging to <math>\mathbb C</math> set. On the example below, the real and imaginary parts are integer numbers, but they can also belong to the entire set of real numbers <math>\mathbb R</math>. The product is: '''β352,507,340,640 β 400,599,719,520 ''i'''''. {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:left;" |+ Skalli multiplicative 7Γ7 of [[complex numbers]] |- | style="text-align:right;border-right:none;padding-right:0;width:5ex;"| 21 ||style="border-left:none;padding-left:0;width:6ex;"| +14''i'' | style="text-align:right;border-right:none;padding-right:0;width:5ex;"|−70 ||style="border-left:none;padding-left:0;width:6ex;"| +30''i'' | style="text-align:right;border-right:none;padding-right:0;width:5ex;"|−93 ||style="border-left:none;padding-left:0;width:6ex;"|−9''i'' | style="text-align:right;border-right:none;padding-right:0;width:5ex;"|−105||style="border-left:none;padding-left:0;width:6ex;"|−217''i'' | style="text-align:right;border-right:none;padding-right:0;width:5ex;"| 16 ||style="border-left:none;padding-left:0;width:6ex;"| +50''i'' | style="text-align:right;border-right:none;padding-right:0;width:5ex;"| 4 ||style="border-left:none;padding-left:0;width:6ex;"|−14''i'' | style="text-align:right;border-right:none;padding-right:0;width:5ex;"| 14 ||style="border-left:none;padding-left:0;width:6ex;"|−8''i'' |- | style="text-align:right;border-right:none;padding-right:0;"| 63 ||style="border-left:none;padding-left:0;"|−35''i'' | style="text-align:right;border-right:none;padding-right:0;"| 28 ||style="border-left:none;padding-left:0;"| +114''i'' | style="text-align:right;border-right:none;padding-right:0;"| ||style="border-left:none;padding-left:0;"|−14''i'' | style="text-align:right;border-right:none;padding-right:0;"| 2 ||style="border-left:none;padding-left:0;"| +6''i'' | style="text-align:right;border-right:none;padding-right:0;"| 3 ||style="border-left:none;padding-left:0;"|−11''i'' | style="text-align:right;border-right:none;padding-right:0;"| 211||style="border-left:none;padding-left:0;"| +357''i'' | style="text-align:right;border-right:none;padding-right:0;"|−123||style="border-left:none;padding-left:0;"|−87''i'' |- | style="text-align:right;border-right:none;padding-right:0;"| 31 ||style="border-left:none;padding-left:0;"|−15''i'' | style="text-align:right;border-right:none;padding-right:0;"| 13 ||style="border-left:none;padding-left:0;"|−13''i'' | style="text-align:right;border-right:none;padding-right:0;"|−103||style="border-left:none;padding-left:0;"| +69''i'' | style="text-align:right;border-right:none;padding-right:0;"|−261||style="border-left:none;padding-left:0;"|−213''i'' | style="text-align:right;border-right:none;padding-right:0;"| 49 ||style="border-left:none;padding-left:0;"|−49''i'' | style="text-align:right;border-right:none;padding-right:0;"|−46 ||style="border-left:none;padding-left:0;"| +2''i'' | style="text-align:right;border-right:none;padding-right:0;"|−6 ||style="border-left:none;padding-left:0;"| +2''i'' |- | style="text-align:right;border-right:none;padding-right:0;"| 102||style="border-left:none;padding-left:0;"|−84''i'' | style="text-align:right;border-right:none;padding-right:0;"|−28 ||style="border-left:none;padding-left:0;"|−14''i'' | style="text-align:right;border-right:none;padding-right:0;"| 43 ||style="border-left:none;padding-left:0;"| +247''i'' | style="text-align:right;border-right:none;padding-right:0;"|−10 ||style="border-left:none;padding-left:0;"|−2''i'' | style="text-align:right;border-right:none;padding-right:0;"| 5 ||style="border-left:none;padding-left:0;"| +9''i'' | style="text-align:right;border-right:none;padding-right:0;"| 31 ||style="border-left:none;padding-left:0;"|−27''i'' | style="text-align:right;border-right:none;padding-right:0;"|−77 ||style="border-left:none;padding-left:0;"| +91''i'' |- | style="text-align:right;border-right:none;padding-right:0;"|−22 ||style="border-left:none;padding-left:0;"|−6''i'' | style="text-align:right;border-right:none;padding-right:0;"| 7 ||style="border-left:none;padding-left:0;"| +7''i'' | style="text-align:right;border-right:none;padding-right:0;"| 8 ||style="border-left:none;padding-left:0;"| +14''i'' | style="text-align:right;border-right:none;padding-right:0;"| 50 ||style="border-left:none;padding-left:0;"| +20''i'' | style="text-align:right;border-right:none;padding-right:0;"|−525||style="border-left:none;padding-left:0;"|−492''i'' | style="text-align:right;border-right:none;padding-right:0;"|−28 ||style="border-left:none;padding-left:0;"|−42''i'' | style="text-align:right;border-right:none;padding-right:0;"|−73 ||style="border-left:none;padding-left:0;"| +17''i'' |- | style="text-align:right;border-right:none;padding-right:0;"| 54 ||style="border-left:none;padding-left:0;"| +68''i'' | style="text-align:right;border-right:none;padding-right:0;"| 138||style="border-left:none;padding-left:0;"|−165''i'' | style="text-align:right;border-right:none;padding-right:0;"|−56 ||style="border-left:none;padding-left:0;"|−98''i'' | style="text-align:right;border-right:none;padding-right:0;"|−63 ||style="border-left:none;padding-left:0;"| +35''i'' | style="text-align:right;border-right:none;padding-right:0;"| 4 ||style="border-left:none;padding-left:0;"|−8''i'' | style="text-align:right;border-right:none;padding-right:0;"| 2 ||style="border-left:none;padding-left:0;"|−4''i'' | style="text-align:right;border-right:none;padding-right:0;"| 70 ||style="border-left:none;padding-left:0;"|−53''i'' |- | style="text-align:right;border-right:none;padding-right:0;"| 24 ||style="border-left:none;padding-left:0;"| +22''i'' | style="text-align:right;border-right:none;padding-right:0;"|−46 ||style="border-left:none;padding-left:0;"|−16''i'' | style="text-align:right;border-right:none;padding-right:0;"| 6 ||style="border-left:none;padding-left:0;"|−4''i'' | style="text-align:right;border-right:none;padding-right:0;"| 17 ||style="border-left:none;padding-left:0;"| +20''i'' | style="text-align:right;border-right:none;padding-right:0;"| 110||style="border-left:none;padding-left:0;"| +160''i'' | style="text-align:right;border-right:none;padding-right:0;"| 84 ||style="border-left:none;padding-left:0;"|−189''i'' | style="text-align:right;border-right:none;padding-right:0;"| 42 ||style="border-left:none;padding-left:0;"|−14''i'' |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)