Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Acoustic theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===For a moving medium=== Again, we can derive the small-disturbance limit for sound waves in a moving medium. Again, starting with : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' + \nabla\cdot \rho'\mathbf{v} & = 0 \\ (\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{u}\cdot\nabla)\mathbf{v} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0 \end{align} </math> We can linearize these into : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' & = 0 \\ \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{u}\cdot\nabla)\mathbf{v} + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> ====For Irrotational Fluids in a Moving Medium==== Given that we saw that : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' & = 0 \\ \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{u}\cdot\nabla)\mathbf{v} + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> If we make the previous assumptions of the fluid being ideal and the velocity being irrotational, then we have : <math> \begin{align} p' & = \left(\frac{\partial p}{\partial \rho_{0}}\right)_{s}\rho' = c^{2}\rho' \\ \mathbf{v} & = -\nabla\phi \end{align} </math> Under these assumptions, our linearized sound equations become : <math> \begin{align} \frac{1}{c^2}\frac{\partial p'}{\partial t} -\rho_0\nabla^2\phi+\frac{1}{c^2}\mathbf{u}\cdot\nabla p' & = 0 \\ -\frac{\partial}{\partial t}(\nabla\phi) - (\mathbf{u}\cdot\nabla)[\nabla\phi] + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> Importantly, since <math>\mathbf{u}</math> is a constant, we have <math>(\mathbf{u}\cdot\nabla)[\nabla\phi] = \nabla[(\mathbf{u}\cdot\nabla)\phi]</math>, and then the second equation tells us that : <math> \frac{1}{\rho_0} \nabla p' = \nabla\left[\frac{\partial\phi}{\partial t} + (\mathbf{u}\cdot\nabla)\phi\right] </math> Or just that : <math> p' = \rho_{0}\left[\frac{\partial\phi}{\partial t} + (\mathbf{u}\cdot\nabla)\phi\right] </math> Now, when we use this relation with the fact that <math>\frac{1}{c^2}\frac{\partial p'}{\partial t} -\rho_0\nabla^2\phi+\frac{1}{c^2}\mathbf{u}\cdot\nabla p' = 0</math>, alongside cancelling and rearranging terms, we arrive at : <math> \frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} - \nabla^2\phi + \frac{1}{c^2}\frac{\partial}{\partial t}[(\mathbf{u}\cdot\nabla)\phi] + \frac{1}{c^2}\frac{\partial}{\partial t}(\mathbf{u}\cdot\nabla\phi) + \frac{1}{c^2}\mathbf{u}\cdot\nabla[(\mathbf{u}\cdot\nabla)\phi] = 0 </math> We can write this in a familiar form as :<math> \left[\frac{1}{c^2}\left(\frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla\right)^{2} - \nabla^{2}\right]\phi = 0 </math> This differential equation must be solved with the appropriate boundary conditions. Note that setting <math>\mathbf{u}=0</math> returns us the wave equation. Regardless, upon solving this equation for a moving medium, we then have :<math> \begin{align} \mathbf{v} & = -\nabla \phi \\ p' & = \rho_{0}\left(\frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla\right)\phi\\ \rho' & = \frac{\rho_{0}}{c^{2}}\left(\frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla\right)\phi \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)