Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Action potential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Neurotransmission== {{Main|Neurotransmission}} ===Anatomy of a neuron=== {{Neuron map}} Several types of cells support an action potential, such as plant cells, muscle cells, and the specialized cells of the heart (in which occurs the [[cardiac action potential]]). However, the main excitable cell is the [[neuron]], which also has the simplest mechanism for the action potential.{{cn|date=May 2024}} Neurons are electrically excitable cells composed, in general, of one or more dendrites, a single [[soma (biology)|soma]], a single axon and one or more [[axon terminal]]s. Dendrites are cellular projections whose primary function is to receive synaptic signals. Their protrusions, known as [[dendritic spine]]s, are designed to capture the neurotransmitters released by the presynaptic neuron. They have a high concentration of [[ligand-gated ion channel]]s. These spines have a thin neck connecting a bulbous protrusion to the dendrite. This ensures that changes occurring inside the spine are less likely to affect the neighboring spines. The dendritic spine can, with rare exception (see [[Long-term potentiation#Properties|LTP]]), act as an independent unit. The dendrites extend from the soma, which houses the [[Cell nucleus|nucleus]], and many of the "normal" [[eukaryote|eukaryotic]] organelles. Unlike the spines, the surface of the soma is populated by voltage activated ion channels. These channels help transmit the signals generated by the dendrites. Emerging out from the soma is the [[axon hillock]]. This region is characterized by having a very high concentration of voltage-activated sodium channels. In general, it is considered to be the spike initiation zone for action potentials,{{sfn|Bullock|Orkand|Grinnell|1977|p=11}} i.e. the [[trigger zone]]. Multiple signals generated at the spines, and transmitted by the soma all converge here. Immediately after the axon hillock is the axon. This is a thin tubular protrusion traveling away from the soma. The axon is insulated by a [[myelin]] sheath. Myelin is composed of either [[Schwann cells]] (in the peripheral nervous system) or [[oligodendrocytes]] (in the central nervous system), both of which are types of [[glial cells]]. Although glial cells are not involved with the transmission of electrical signals, they communicate and provide important biochemical support to neurons.{{sfn|Silverthorn|2010|p=253}} To be specific, myelin wraps multiple times around the axonal segment, forming a thick fatty layer that prevents ions from entering or escaping the axon. This insulation prevents significant signal decay as well as ensuring faster signal speed. This insulation, however, has the restriction that no channels can be present on the surface of the axon. There are, therefore, regularly spaced patches of membrane, which have no insulation. These [[nodes of Ranvier]] can be considered to be "mini axon hillocks", as their purpose is to boost the signal in order to prevent significant signal decay. At the furthest end, the axon loses its insulation and begins to branch into several [[axon terminal]]s. These presynaptic terminals, or synaptic boutons, are a specialized area within the axon of the presynaptic cell that contains [[neurotransmitters]] enclosed in small membrane-bound spheres called [[synaptic vesicle]]s.{{cn|date=May 2024}} ===Initiation=== Before considering the propagation of action potentials along [[axon]]s and their termination at the synaptic knobs, it is helpful to consider the methods by which action potentials can be initiated at the [[axon hillock]]. The basic requirement is that the membrane voltage at the hillock be raised above the threshold for firing.{{sfn|Bullock|Orkand|Grinnell|1977|pp=150β151}}{{sfn|Junge|1981|pp=89β90}}{{sfnm|1a1=Purves|1a2=Augustine|1a3=Fitzpatrick|1a4=Hall|1y=2008|1pp=49β50|2a1=Bullock|2a2=Orkand|2a3=Grinnell|2y=1977|2pp=140β141|3a1=Schmidt-Nielsen|3y=1997|3pp=480-481}}{{sfn|Schmidt-Nielsen|1997|pp=483-484}} There are several ways in which this depolarization can occur. {{clear}} [[Image:SynapseSchematic en.svg|thumb|right|300px|When an action potential arrives at the end of the pre-synaptic axon (top), it causes the release of [[neurotransmitter]] molecules that open ion channels in the post-synaptic neuron (bottom). The combined [[excitatory postsynaptic potential|excitatory]] and [[inhibitory postsynaptic potential]]s of such inputs can begin a new action potential in the post-synaptic neuron.|alt=The pre- and post-synaptic axons are separated by a short distance known as the synaptic cleft. Neurotransmitter released by pre-synaptic axons diffuse through the synaptic clef to bind to and open ion channels in post-synaptic axons.]] ===Dynamics=== Action potentials are most commonly initiated by [[excitatory postsynaptic potential]]s from a presynaptic neuron.{{sfnm|1a1=Bullock|1a2=Orkand|1a3=Grinnell|1y=1977|1pp=177β240|2a1=Schmidt-Nielsen|2y=1997|2pp=490-499|3a1=Stevens|3y=1966|3p=47β68}} Typically, [[neurotransmitter]] molecules are released by the [[synapse|presynaptic]] [[neuron]]. These neurotransmitters then bind to receptors on the postsynaptic cell. This binding opens various types of [[ion channel]]s. This opening has the further effect of changing the local permeability of the [[cell membrane]] and, thus, the membrane potential. If the binding increases the voltage (depolarizes the membrane), the synapse is excitatory. If, however, the binding decreases the voltage (hyperpolarizes the membrane), it is inhibitory. Whether the voltage is increased or decreased, the change propagates passively to nearby regions of the membrane (as described by the [[cable equation]] and its refinements). Typically, the voltage stimulus decays exponentially with the distance from the synapse and with time from the binding of the neurotransmitter. Some fraction of an excitatory voltage may reach the [[axon hillock]] and may (in rare cases) depolarize the membrane enough to provoke a new action potential. More typically, the excitatory potentials from several synapses must [[spatial summation|work together]] at [[temporal summation|nearly the same time]] to provoke a new action potential. Their joint efforts can be thwarted, however, by the counteracting [[inhibitory postsynaptic potential]]s.{{cn|date=May 2024}} Neurotransmission can also occur through [[electrical synapse]]s.{{sfnm|1a1=Bullock|1a2=Orkand|1a3=Grinnell|1y=1977|1pp=178β180|2a1=Schmidt-Nielsen|2y=1997|2pp=490-491}} Due to the direct connection between excitable cells in the form of [[gap junction]]s, an action potential can be transmitted directly from one cell to the next in either direction. The free flow of ions between cells enables rapid non-chemical-mediated transmission. Rectifying channels ensure that action potentials move only in one direction through an electrical synapse.{{Citation needed|date=May 2011}} Electrical synapses are found in all nervous systems, including the human brain, although they are a distinct minority.{{sfn|Purves|Augustine|Fitzpatrick|Hall|2001}} ==="All-or-none" principle=== {{Main|All-or-none law}} The [[amplitude]] of an action potential is often thought to be independent of the amount of current that produced it. In other words, larger currents do not create larger action potentials. Therefore, action potentials are said to be [[All-or-none law|all-or-none]] signals, since either they occur fully or they do not occur at all.<ref name=" Sasaki " group=lower-alpha>Sasaki, T., Matsuki, N., Ikegaya, Y. 2011 Action-potential modulation during axonal conduction Science 331 (6017), pp. 599β601</ref><ref name="Aur" group=lower-alpha>{{cite journal | vauthors = Aur D, Connolly CI, Jog MS | title = Computing spike directivity with tetrodes | journal = Journal of Neuroscience Methods | volume = 149 | issue = 1 | pages = 57β63 | date = November 2005 | pmid = 15978667 | doi = 10.1016/j.jneumeth.2005.05.006 | s2cid = 34131910 }}</ref><ref name="Aur, Jog" group=lower-alpha>Aur D., Jog, MS., 2010 Neuroelectrodynamics: Understanding the brain language, IOS Press, 2010. {{doi|10.3233/978-1-60750-473-3-i}}</ref> This is in contrast to [[receptor potential]]s, whose amplitudes are dependent on the intensity of a stimulus.{{sfn|Purves|Augustine|Fitzpatrick|Hall|2008|pp=26β28}} In both cases, the [[frequency]] of action potentials is correlated with the intensity of a stimulus. Despite the classical view of the action potential as a stereotyped, uniform signal having dominated the field of neuroscience for many decades, newer evidence does suggest that action potentials are more complex events indeed capable of transmitting information through not just their amplitude, but their duration and phase as well, sometimes even up to distances originally not thought to be possible.<ref>{{cite journal |title=Myelination Increases the Spatial Extent of Analog Modulation of Synaptic Transmission: A Modeling Study |url=https://www.researchgate.net/publication/339655307|journal=Frontiers in Cellular Neuroscience}}</ref><ref>{{cite journal |title=Past and Future of Analog-Digital Modulation of Synaptic Transmission |year=2019 |pmc=6492051 |last1=Zbili |first1=M. |last2=Debanne |first2=D. |journal=Frontiers in Cellular Neuroscience |volume=13 |page=160 |doi=10.3389/fncel.2019.00160 |pmid=31105529 |doi-access=free }}</ref><ref>{{cite journal |title=Neural Coding: Analog Signalling in Axons | journal=Current Biology | date=8 August 2006 | volume=16 | issue=15 | pages=R585βR588 | doi=10.1016/j.cub.2006.07.007 | last1=Clark | first1=Beverley | last2=HΓ€usser | first2=Michael | pmid=16890514 | s2cid=8295969 | doi-access=free }}</ref><ref>{{cite journal |title=Analog transmission of action potential fine structure in spiral ganglion axons |year=2021 |doi=10.1152/jn.00237.2021 |last1=Liu |first1=Wenke |last2=Liu |first2=Qing |last3=Crozier |first3=Robert A. |last4=Davis |first4=Robin L. |journal=Journal of Neurophysiology |volume=126 |issue=3 |pages=888β905 |pmid=34346782 |pmc=8461829 }}</ref> ===Sensory neurons=== {{Main|Sensory neuron}} In [[sensory neurons]], an external signal such as pressure, temperature, light, or sound is coupled with the opening and closing of [[ion channels]], which in turn alter the ionic permeabilities of the membrane and its voltage.{{sfnm|1a1=Schmidt-Nielsen|1y=1997|1pp=535β580|2a1=Bullock|2a2=Orkand|2a3=Grinnell|2y=1977|2pp=49β56, 76β93, 247β255|3a1=Stevens|3y=1966|3pp=69β79}} These voltage changes can again be excitatory (depolarizing) or inhibitory (hyperpolarizing) and, in some sensory neurons, their combined effects can depolarize the axon hillock enough to provoke action potentials. Some examples in humans include the [[olfactory receptor neuron]] and [[Meissner's corpuscle]], which are critical for the sense of [[olfaction|smell]] and [[somatosensory system|touch]], respectively. However, not all sensory neurons convert their external signals into action potentials; some do not even have an axon.{{sfnm|1a1=Bullock|1a2=Orkand|1a3=Grinnell|1y=1977|1pp=53|2a1=Bullock|2a2=Orkand|2a3=Grinnell|2y=1977|2pp=122β124}} Instead, they may convert the signal into the release of a [[neurotransmitter]], or into continuous [[receptor potential|graded potentials]], either of which may stimulate subsequent neuron(s) into firing an action potential. For illustration, in the human [[ear]], [[hair cell]]s convert the incoming sound into the opening and closing of [[stretch-activated ion channel|mechanically gated ion channels]], which may cause [[neurotransmitter]] molecules to be released. In similar manner, in the human [[retina]], the initial [[photoreceptor cell]]s and the next layer of cells (comprising [[bipolar cell]]s and [[horizontal cell]]s) do not produce action potentials; only some [[amacrine cell]]s and the third layer, the [[Retinal ganglion cell|ganglion cell]]s, produce action potentials, which then travel up the [[optic nerve]].{{cn|date=May 2024}} ===Pacemaker potentials=== {{Main|Pacemaker potential}} [[Image:Pacemaker potential.svg|thumb|right|In [[pacemaker potential]]s, the cell spontaneously depolarizes (straight line with upward slope) until it fires an action potential.|alt=A plot of action potential (mV) vs time. The membrane potential is initially β60 mV, rise relatively slowly to the threshold potential of β40 mV, and then quickly spikes at a potential of +10 mV, after which it rapidly returns to the starting β60 mV potential. The cycle is then repeated.]] In sensory neurons, action potentials result from an external stimulus. However, some excitable cells require no such stimulus to fire: They spontaneously depolarize their axon hillock and fire action potentials at a regular rate, like an internal clock.{{sfn|Junge|1981|pp=115β132}} The voltage traces of such cells are known as [[pacemaker potential]]s.{{sfn|Bullock|Orkand|Grinnell|1977|pp=152β153}} The [[cardiac pacemaker]] cells of the [[sinoatrial node]] in the [[heart]] provide a good example.<ref name="noble_1960" group=lower-alpha >{{cite journal | vauthors = Noble D | title = Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations | journal = Nature | volume = 188 | issue = 4749 | pages = 495β7 | date = November 1960 | pmid = 13729365 | doi = 10.1038/188495b0 | bibcode = 1960Natur.188..495N | s2cid = 4147174 }}</ref> Although such pacemaker potentials have a [[neural oscillation|natural rhythm]], it can be adjusted by external stimuli; for instance, [[heart rate]] can be altered by pharmaceuticals as well as signals from the [[sympathetic nervous system|sympathetic]] and [[parasympathetic nervous system|parasympathetic]] nerves.{{sfn|Bullock|Orkand|Grinnell|1977|pp=444β445}} The external stimuli do not cause the cell's repetitive firing, but merely alter its timing.{{sfn|Bullock|Orkand|Grinnell|1977|pp=152β153}} In some cases, the regulation of frequency can be more complex, leading to patterns of action potentials, such as [[bursting]].{{cn|date=May 2024}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)