Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Algebra of random variables
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Approximations by Taylor series expansions of moments == If the [[Moment (mathematics)|moments]] of a certain random variable <math>X</math> are known (or can be determined by integration if the [[probability density function]] is known), then it is possible to approximate the expected value of any general non-linear function <math>f(X)</math> as a [[Taylor expansions for the moments of functions of random variables|Taylor series expansion of the moments]], as follows: <math display="block">f(X) = \sum_{n=0}^\infty \frac{1}{n!} \left(\frac{d^n f}{dX^n}\right)_{X=\mu} {\left(X - \mu\right)}^n,</math> where <math>\mu = \operatorname{E}[X]</math> is the mean value of <math>X</math>. <math display="block">\begin{align} \operatorname{E}[f(X)] &= \operatorname{E}\left[ \sum_{n=0}^\infty \frac{1}{n!}\left({d^nf \over dX^n}\right)_{X=\mu} {\left(X-\mu\right)}^n\right] \\ &= \sum_{n=0}^\infty \frac{1}{n!}\left(\frac{d^n f}{dX^n}\right)_{X=\mu} \operatorname{E}\left[{\left(X - \mu\right)}^n\right] \\ &= \sum_{n=0}^\infty \frac{1}{n!}\left({d^nf \over dX^n}\right)_{X=\mu}\mu_n(X), \end{align}</math> where <math>\mu_n(X) = \operatorname{E}[(X-\mu)^n]</math> is the ''n''-th moment of <math>X</math> about its mean. Note that by their definition, <math>\mu_0(X)=1</math> and <math>\mu_1(X)=0</math>. The first order term always vanishes but was kept to obtain a closed form expression. Then, <math display="block">\operatorname{E}[f(X)] \approx \sum_{n=0}^{n_{\max}} \frac{1}{n!} \left(\frac{d^nf}{dX^n}\right)_{X=\mu}\mu_n(X), </math> where the Taylor expansion is truncated after the <math>n_{\max} </math>-th moment. Particularly for functions of [[normal random variable]]s, it is possible to obtain a Taylor expansion in terms of the [[standard normal distribution]]:<ref>{{Cite journal|last=Hernandez|first=Hugo|date=2016|title=Modelling the effect of fluctuation in nonlinear systems using variance algebra - Application to light scattering of ideal gases|journal=ForsChem Research Reports|language=en|volume=2016-1|doi=10.13140/rg.2.2.36501.52969}}</ref> <math display="block">f(X) = \sum_{n=0}^\infty \frac{\sigma^n}{n!} \left(\frac{d^n f}{dX^n}\right)_{X=\mu} \mu_n(Z),</math>where <math>X \sim N(\mu,\sigma ^2)</math> is a normal random variable, and <math>Z\sim N(0,1)</math> is the standard normal distribution. Thus, <math display="block">\operatorname{E}[f(X)]\approx \sum_{n=0}^{n_{\max}} {\sigma ^n \over n!} \left({d^nf \over dX^n}\right)_{X=\mu} \mu_n(Z) , </math> where the moments of the standard normal distribution are given by: <math display="block">\mu_n(Z) = \begin{cases} \prod_{i=1}^{n/2}(2i-1), & \text{if } n \text{ is even} \\ 0, & \text{if }n\text{ is odd} \end{cases}</math> Similarly for normal random variables, it is also possible to approximate the variance of the non-linear function as a Taylor series expansion as: <math display="block">\operatorname{Var}[f(X)] \approx \sum_{n=1}^{n_{\max}} \left({\sigma^n \over n!} \left({d^nf \over dX^n}\right)_{X=\mu}\right)^2 \operatorname{Var}[Z^n] + \sum_{n=1}^{n_{\max}} \sum_{m \neq n} \frac{\sigma^{n+m}}{{n!m!}} \left({d^nf \over dX^n}\right)_{X=\mu} \left({d^mf \over dX^m}\right)_{X=\mu} \operatorname{Cov}[Z^n,Z^m],</math> where <math display="block">\operatorname{Var}[Z^n] = \begin{cases} \prod_{i=1}^{n}(2i-1) -\prod_{i=1}^{n/2}(2i-1)^2, & \text{if }n\text{ is even} \\ \prod_{i=1}^{n}(2i-1), & \text{if }n\text{ is odd}, \end{cases}</math> and <math display="block">\operatorname{Cov}[Z^n,Z^m] = \begin{cases} \prod_{i=1}^{(n+m)/2}(2i-1) -\prod_{i=1}^{n/2}(2i-1) \prod_{j=1}^{m/2}(2j-1), & \text{if }n\text{ and }m \text{ are even} \\ \prod_{i=1}^{(n+m)/2}(2i-1), & \text{if }n\text{ and }m\text{ are odd} \\ 0, & \text{otherwise} \end{cases}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)