Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Analytic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Analyticity and differentiability== As noted above, any analytic function (real or complex) is infinitely differentiable (also known as smooth, or <math>\mathcal{C}^{\infty}</math>). (Note that this differentiability is in the sense of real variables; compare complex derivatives below.) There exist smooth real functions that are not analytic: see [[non-analytic smooth function]]. In fact there are many such functions. The situation is quite different when one considers complex analytic functions and complex derivatives. It can be proved that [[proof that holomorphic functions are analytic|any complex function differentiable (in the complex sense) in an open set is analytic]]. Consequently, in [[complex analysis]], the term ''analytic function'' is synonymous with ''[[holomorphic function]]''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)