Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Azimuthal quantum number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Beyond isolated atoms == {{See also|Density functional theory|History of spectroscopy}} [[File:Electron_energy_loss_spectroscopy_coreloss_lsmo.svg|thumb|Example of inner shell ionization edge (core loss) EELS data from La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>, acquired in a [[Scanning transmission electron microscopy|scanning transmission electron microscope]].]] The angular momentum quantum numbers strictly refer to isolated atoms. However, they have wider uses for atoms in solids, liquids or gases. The {{math|''ℓ m''}} quantum number corresponds to specific [[spherical harmonics]] and are commonly used to describe features observed in spectroscopic methods such as [[X-ray photoelectron spectroscopy]]<ref>{{Cite book |last=Hüfner |first=Stefan |url=http://link.springer.com/10.1007/978-3-662-09280-4 |title=Photoelectron Spectroscopy |date=2003 |publisher=Springer Berlin Heidelberg |isbn=978-3-642-07520-9 |series=Advanced Texts in Physics |location=Berlin, Heidelberg |doi=10.1007/978-3-662-09280-4}}</ref> and [[electron energy loss spectroscopy]].<ref>{{Cite book |last=Egerton |first=R.F. |url=https://link.springer.com/10.1007/978-1-4419-9583-4 |title=Electron Energy-Loss Spectroscopy in the Electron Microscope |date=2011 |publisher=Springer US |isbn=978-1-4419-9582-7 |location=Boston, MA |language=en |doi=10.1007/978-1-4419-9583-4}}</ref> (The notation is slightly different, with [[X-ray notation]] where K, L, M are used for excitations out of electron states with <math>n=0, 1, 2</math>.) The angular momentum quantum numbers are also used when the electron states are described in methods such as [[Kohn–Sham equations|Kohn–Sham density functional theory]]<ref>{{Cite journal |last=Kohn |first=W. |last2=Sham |first2=L. J. |date=1965 |title=Self-Consistent Equations Including Exchange and Correlation Effects |url=https://link.aps.org/doi/10.1103/PhysRev.140.A1133 |journal=Physical Review |language=en |volume=140 |issue=4A |pages=A1133–A1138 |doi=10.1103/PhysRev.140.A1133 |issn=0031-899X}}</ref> or with [[gaussian orbital]]s.<ref>{{Citation |last=Gill |first=Peter M.W. |title=Molecular integrals Over Gaussian Basis Functions |date=1994 |work=Advances in Quantum Chemistry |volume=25 |pages=141–205 |url=https://linkinghub.elsevier.com/retrieve/pii/S0065327608600192 |access-date=2024-02-20 |publisher=Elsevier |language=en |doi=10.1016/s0065-3276(08)60019-2 |isbn=978-0-12-034825-1|url-access=subscription }}</ref> For instance, in [[silicon]] the electronic properties used in [[semiconductor device]] are due to the p-like states with <math>l=1</math> centered at each atom, while many properties of [[transition metal]]s depend upon the d-like states with <math>l=2</math>.<ref>{{Cite book |last=Pettifor |first=D. G. |title=Bonding and structure of molecules and solids |date=1996 |publisher=Clarendon Press |isbn=978-0-19-851786-3 |edition=Reprint with corr |series=Oxford science publications |location=Oxford}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)