Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Basel problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==A proof using Euler's formula and L'H么pital's rule== The normalized [[sinc function]] <math>\text{sinc}(x)=\frac{\sin (\pi x)}{\pi x}</math> has a [[Weierstrass factorization theorem|Weierstrass factorization]] representation as an infinite product: <math display=block>\frac{\sin (\pi x)}{\pi x} = \prod_{n=1}^\infty \left(1-\frac{x^2}{n^2}\right).</math> The infinite product is [[Analytic function|analytic]], so taking the [[natural logarithm]] of both sides and differentiating yields <math display=block>\frac{\pi \cos (\pi x)}{\sin (\pi x)}-\frac{1}{x}=-\sum_{n=1}^\infty \frac{2x}{n^2-x^2}</math> (by [[Uniform convergence#To differentiability|uniform convergence]], the interchange of the derivative and infinite series is permissible). After dividing the equation by <math>2x</math> and regrouping one gets <math display=block>\frac{1}{2x^2}-\frac{\pi \cot (\pi x)}{2x}=\sum_{n=1}^\infty \frac{1}{n^2-x^2}.</math> We make a change of variables (<math>x=-it</math>): <math display=block>-\frac{1}{2t^2}+\frac{\pi \cot (-\pi it)}{2it}=\sum_{n=1}^\infty \frac{1}{n^2+t^2}.</math> [[Euler's formula]] can be used to deduce that <math display=block>\frac{\pi \cot (-\pi i t)}{2it}=\frac{\pi}{2it}\frac{i\left(e^{2\pi t}+1\right)}{e^{2\pi t}-1}=\frac{\pi}{2t}+\frac{\pi}{t\left(e^{2\pi t} - 1\right)}.</math> or using the corresponding [[hyperbolic function]]: <math display=block>\frac{\pi \cot (-\pi i t)}{2it}=\frac{\pi}{2t}{i\cot (\pi i t)}=\frac{\pi}{2t}\coth(\pi t).</math> Then <math display=block>\sum_{n=1}^\infty \frac{1}{n^2+t^2}=\frac{\pi \left(te^{2\pi t}+t\right)-e^{2\pi t}+1}{2\left(t^2 e^{2\pi t}-t^2\right)}=-\frac{1}{2t^2} + \frac{\pi}{2t} \coth(\pi t).</math> Now we take the [[limit (mathematics)|limit]] as <math>t</math> approaches zero and use [[L'H么pital's rule]] thrice. By [[Tannery's theorem]] applied to <math display="inline">\lim_{t\to\infty}\sum_{n=1}^\infty 1/(n^2+1/t^2)</math>, we can [[Interchange of limiting operations|interchange the limit and infinite series]] so that <math display="inline">\lim_{t\to 0}\sum_{n=1}^\infty 1/(n^2+t^2)=\sum_{n=1}^\infty 1/n^2</math> and by L'H么pital's rule <math display=block>\begin{align}\sum_{n=1}^\infty \frac{1}{n^2}&=\lim_{t\to 0}\frac{\pi}{4}\frac{2\pi te^{2\pi t}-e^{2\pi t}+1}{\pi t^2 e^{2\pi t} + te^{2\pi t}-t}\\[6pt] &=\lim_{t\to 0}\frac{\pi^3 te^{2\pi t}}{2\pi \left(\pi t^2 e^{2\pi t}+2te^{2\pi t} \right)+e^{2\pi t}-1}\\[6pt] &=\lim_{t\to 0}\frac{\pi^2 (2\pi t+1)}{4\pi^2 t^2+12\pi t+6}\\[6pt] &=\frac{\pi^2}{6}.\end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)