Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bell's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Kochen–Specker theorem (1967)=== {{main|Kochen–Specker theorem}} In quantum theory, orthonormal bases for a [[Hilbert space]] represent measurements that can be performed upon a system having that Hilbert space. Each vector in a basis represents a possible outcome of that measurement.{{refn|group=note|In more detail, as developed by [[Paul Dirac]],<ref>{{cite book|first=Paul Adrien Maurice |last=Dirac |author-link=Paul Dirac |title=The Principles of Quantum Mechanics |title-link=The Principles of Quantum Mechanics |publisher=Clarendon Press |location=Oxford |year=1930}}</ref> [[David Hilbert]],<ref>{{cite book|first=David |last=Hilbert |author-link=David Hilbert |title=Lectures on the Foundations of Physics 1915–1927: Relativity, Quantum Theory and Epistemology |publisher=Springer |doi=10.1007/b12915 |editor-first1=Tilman |editor-last1=Sauer |editor-first2=Ulrich |editor-last2=Majer |year=2009 |isbn=978-3-540-20606-4 |oclc=463777694}}</ref> [[John von Neumann]],<ref>{{cite book|first=John |last=von Neumann |author-link=John von Neumann |title=Mathematische Grundlagen der Quantenmechanik |publisher=Springer |location=Berlin |year=1932}} English translation: {{cite book|title=Mathematical Foundations of Quantum Mechanics |title-link=Mathematical Foundations of Quantum Mechanics |publisher=Princeton University Press |year=1955 |translator-first=Robert T. |translator-last=Beyer |translator-link=Robert T. Beyer}}</ref> and [[Hermann Weyl]],<ref>{{cite book|first=Hermann |last=Weyl |author-link=Hermann Weyl |title=The Theory of Groups and Quantum Mechanics |title-link=Gruppentheorie und Quantenmechanik |orig-year=1931 |publisher=Dover |year=1950 |isbn=978-0-486-60269-1 |translator-first=H. P. |translator-last=Robertson |translator-link=Howard P. Robertson}} Translated from the German {{cite book |title=Gruppentheorie und Quantenmechanik |year=1931 |edition=2nd |publisher={{ill|S. Hirzel Verlag|de}}}}</ref> the state of a quantum mechanical system is a vector <math>|\psi\rangle</math> belonging to a ([[Separable space|separable]]) Hilbert space <math>\mathcal H</math>. Physical quantities of interest — position, momentum, energy, spin — are represented by "observables", which are [[self-adjoint operator|self-adjoint]] linear [[Operator (physics)|operator]]s acting on the Hilbert space. When an observable is measured, the result will be one of its eigenvalues with probability given by the [[Born rule]]: in the simplest case the eigenvalue <math>\eta</math> is non-degenerate and the probability is given by <math>|\langle \eta|\psi\rangle|^2</math>, where <math>|\eta\rangle</math> is its associated eigenvector. More generally, the eigenvalue is degenerate and the probability is given by <math>\langle \psi|P_\eta\psi\rangle</math>, where <math>P_\eta</math> is the projector onto its associated eigenspace. For the purposes of this discussion, we can take the eigenvalues to be non-degenerate.}} Suppose that a hidden variable <math>\lambda</math> exists, so that knowing the value of <math>\lambda</math> would imply certainty about the outcome of any measurement. Given a value of <math>\lambda</math>, each measurement outcome – that is, each vector in the Hilbert space – is either ''impossible'' or ''guaranteed.'' A Kochen–Specker configuration is a finite set of vectors made of multiple interlocking bases, with the property that a vector in it will always be ''impossible'' when considered as belonging to one basis and ''guaranteed'' when taken as belonging to another. In other words, a Kochen–Specker configuration is an "uncolorable set" that demonstrates the inconsistency of assuming a hidden variable <math>\lambda</math> can be controlling the measurement outcomes.<ref>{{cite book|first=Asher |last=Peres |author-link=Asher Peres |title=Quantum Theory: Concepts and Methods |title-link=Quantum Theory: Concepts and Methods |year=1993 |publisher=[[Kluwer]] |isbn=0-7923-2549-4 |oclc=28854083}}</ref>{{Rp|196–201}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)