Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definitions == Many characterizations of the Bernoulli numbers have been found in the last 300 years, and each could be used to introduce these numbers. Here only four of the most useful ones are mentioned: * a recursive equation, * an explicit formula, * a generating function, * an integral expression. For the proof of the [[Logical equivalence|equivalence]] of the four approaches, see {{harvp|Ireland|Rosen|1990}} or {{harvp|Conway|Guy|1996}}. === Recursive definition === The Bernoulli numbers obey the sum formulas{{r|Weisstein2016}} : <math> \begin{align} \sum_{k=0}^{m}\binom {m+1} k B^{-{}}_k &= \delta_{m, 0} \\ \sum_{k=0}^{m}\binom {m+1} k B^{+{}}_k &= m+1 \end{align}</math> where <math>m=0,1,2...</math> and {{math|''δ''}} denotes the [[Kronecker delta]]. The first of these is sometimes written<ref>Jordan (1950) p 233</ref> as the formula (for m > 1) <math display=block>(B+1)^m-B_m=0,</math> where the power is expanded formally using the binomial theorem and <math>B^k</math> is replaced by <math>B_k</math>. Solving for <math>B^{\mp{}}_m</math> gives the recursive formulas<ref>Ireland and Rosen (1990) p 229</ref> : <math>\begin{align} B_m^{-{}} &= \delta_{m, 0} - \sum_{k=0}^{m-1} \binom{m}{k} \frac{B^{-{}}_k}{m - k + 1} \\ B_m^+ &= 1 - \sum_{k=0}^{m-1} \binom{m}{k} \frac{B^+_k}{m - k + 1}. \end{align}</math> === Explicit definition === In 1893 [[Louis Saalschütz]] listed a total of 38 explicit formulas for the Bernoulli numbers,{{r|Saalschütz1893}} usually giving some reference in the older literature. One of them is (for <math>m\geq 1</math>): :<math>\begin{align} B^-_m &= \sum_{k=0}^m \frac1{k+1} \sum_{j=0}^k \binom{k}{j} (-1)^j j^m \\ B^+_m &= \sum_{k=0}^m \frac1{k+1} \sum_{j=0}^k \binom{k}{j} (-1)^j (j + 1)^m. \end{align}</math> === Generating function === The exponential [[generating function]]s are :<math>\begin{alignat}{3} \frac{t}{e^t - 1} &= \frac{t}{2} \left( \operatorname{coth} \frac{t}{2} -1 \right) &&= \sum_{m=0}^\infty \frac{B^{-{}}_m t^m}{m!}\\ \frac{te^t}{e^t - 1} = \frac{t}{1 - e^{-t}} &= \frac{t}{2} \left( \operatorname{coth} \frac{t}{2} +1 \right) &&= \sum_{m=0}^\infty \frac{B^+_m t^m}{m!}. \end{alignat}</math> where the substitution is <math>t \to - t</math>. The two generating functions only differ by ''t''. {{collapse top|title=Proof}} If we let <math>F(t)=\sum_{i=1}^\infty f_it^i</math> and <math>G(t)=1/(1+F(t))=\sum_{i=0}^\infty g_it^i</math> then :<math>G(t)=1-F(t)G(t).</math> Then <math>g_0=1</math> and for <math>m>0</math> the m{{sup|th}} term in the series for <math>G(t)</math> is: :<math>g_mt^i=-\sum_{j=0}^{m-1}f_{m-j}g_jt^m</math> If :<math>F(t)=\frac{e^t-1}t-1=\sum_{i=1}^\infty \frac{t^i}{(i+1)!}</math> then we find that :<math>G(t)=t/(e^t-1)</math> :<math>\begin{align} m!g_m&=-\sum_{j=0}^{m-1}\frac{m!}{j!}\frac{j!g_j}{(m-j+1)!}\\ &=-\frac 1{m+1}\sum_{j=0}^{m-1}\binom{m+1}jj!g_j\\ \end{align}</math> showing that the values of <math>i!g_i</math> obey the recursive formula for the Bernoulli numbers <math>B^-_i</math>. {{collapse bottom}} The (ordinary) generating function : <math> z^{-1} \psi_1(z^{-1}) = \sum_{m=0}^{\infty} B^+_m z^m</math> is an [[asymptotic series]]. It contains the [[trigamma function]] {{math|''ψ''<sub>1</sub>}}. === Integral Expression === From the generating functions above, one can obtain the following integral formula for the even Bernoulli numbers: :<math>B_{2n} = 4n (-1)^{n+1} \int_0^{\infty} \frac{t^{2n-1}}{e^{2 \pi t} -1 } \mathrm{d} t </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)