Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Berry–Esseen theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Multidimensional version=== As with the [[Central limit theorem#Multidimensional CLT|multidimensional central limit theorem]], there is a multidimensional version of the Berry–Esseen theorem.<ref>Bentkus, Vidmantas. "A Lyapunov-type bound in R<sup>d</sup>." Theory of Probability & Its Applications 49.2 (2005): 311–323.</ref><ref name=":0" /> :Let <math>X_1,\dots,X_n</math> be independent <math>\mathbb R^d</math>-valued random vectors each having mean zero. Write <math>S_n = \sum_{i=1}^n X_i</math> and assume <math>\Sigma_n = \operatorname{Cov}[S_n]</math> is invertible. Let <math>Z_n\sim\operatorname{N}(0,{\Sigma_n})</math> be a <math>d</math>-dimensional Gaussian with the same mean and covariance matrix as <math>S_n</math>. Then for all convex sets <math>U\subseteq\mathbb R^d</math>, ::<math>\big|\Pr[S_n\in U]-\Pr[Z_n\in U]\,\big| \le C d^{1/4} \gamma_n</math>, :where <math>C</math> is a universal constant and <math>\gamma_n=\sum_{i=1}^n \operatorname{E}\big[\|\Sigma_n^{-1/2}X_i\|_2^3\big]</math> (the third power of the [[L2 norm|L<sup>2</sup> norm]]). The dependency on <math>d^{1/4}</math> is conjectured to be optimal, but might not be.<ref name=":0">{{Cite journal|last=Raič|first=Martin|date=2019|title=A multivariate Berry--Esseen theorem with explicit constants|journal=Bernoulli|volume=25|issue=4A|pages=2824–2853|doi=10.3150/18-BEJ1072|issn=1350-7265|arxiv=1802.06475|s2cid=119607520}}</ref><!-- did you mean "might not necessarily be"? -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)