Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bertrand's postulate
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Better results == It follows from the prime number theorem that for any [[real number|real]] <math>\varepsilon > 0</math> there is a <math>n_0 > 0 </math> such that for all <math>n > n_0</math> there is a prime <math>p</math> such that <math>n < p < (1 + \varepsilon) n</math>. It can be shown, for instance, that :<math>\lim_{n \to \infty}\frac{\pi((1+\varepsilon)n)-\pi(n)}{n/\log n} = \varepsilon,</math> which implies that <math> \pi (( 1 + \varepsilon ) n) - \pi (n) </math> goes to infinity (and, in particular, is greater than 1 for [[sufficiently large]] <math>n</math>).<ref>G. H. Hardy and E. M. Wright, ''An Introduction to the Theory of Numbers'', 6th ed., Oxford University Press, 2008, p. 494.</ref> Non-asymptotic bounds have also been proved. In 1952, Jitsuro Nagura proved that for <math>n \ge 25</math> there is always a prime between <math>n</math> and <math>\bigl(1+\tfrac{1}{5} \bigr) n</math>.<ref>{{Citation | last1 = Nagura | first1 = J | year = 1952 | title = On the interval containing at least one prime number | url = http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?handle=euclid.pja/1195570997&view=body&content-type=pdf_1 | journal = Proceedings of the Japan Academy, Series A | volume = 28 | issue = 4| pages = 177β181 | doi=10.3792/pja/1195570997| doi-access = free }}</ref> In 1976, [[Lowell Schoenfeld]] showed that for <math>n \ge 2\,010\,760</math>, there is always a prime <math>p</math> in the [[open interval]] <math>n < p < \bigl(1+\tfrac{1}{16\,597} \bigr) n</math>.<ref>{{Citation|author=Lowell Schoenfeld|title=Sharper Bounds for the Chebyshev Functions ''ΞΈ''(''x'') and ''Ο''(''x''), II|journal=Mathematics of Computation|volume=30|issue=134|pages=337β360|date=April 1976|doi=10.2307/2005976|jstor=2005976}}</ref> In his 1998 doctoral thesis, [[Pierre Dusart]] improved the above result, showing that for <math>k \ge 463</math>, <math>p_{k+1} \le \left( 1 + \frac{1}{2 \log^2{p_k}} \right) p_k</math>, and in particular for <math>x \ge 3\,275</math>, there exists a prime <math>p</math> in the interval <math>x < p \le \left( 1 + \frac{1}{ 2 \log^2{x} } \right) x</math>.<ref>{{Citation | last = Dusart | first = Pierre | author-link = Pierre Dusart | url = http://www.unilim.fr/laco/theses/1998/T1998_01.pdf | title = Autour de la fonction qui compte le nombre de nombres premiers | type= PhD thesis | language = french | year = 1998 }}</ref> In 2010 Pierre Dusart proved that for <math>x \ge 396\,738</math> there is at least one prime <math>p</math> in the interval <math>x < p \le \left( 1 + \frac{1}{ 25 \log^2{x} } \right) x</math>.<ref>{{cite arXiv | last1 = Dusart | first1 = Pierre | author-link1 = Pierre Dusart | eprint = 1002.0442 | year = 2010 | title = Estimates of Some Functions Over Primes without R.H.| class = math.NT }}</ref> In 2016, Pierre Dusart improved his result from 2010, showing (Proposition 5.4) that if <math>x \ge 89\,693</math>, there is at least one prime <math>p</math> in the interval <math>x < p \le \left( 1 + \frac{1}{ \log^3{x} } \right) x</math>.<ref>{{Citation|journal= The Ramanujan Journal | volume = 45 | pages = 227β251 | last1 = Dusart | first1 = Pierre | author-link1 = Pierre Dusart | year = 2016 | title = Explicit estimates of some functions over primes | doi=10.1007/s11139-016-9839-4| s2cid = 125120533 }}</ref> He also shows (Corollary 5.5) that for <math>x \ge 468\,991\,632</math>, there is at least one prime <math>p</math> in the interval <math>x < p \le \left( 1 + \frac{1}{ 5\,000 \log^2{x} } \right) x</math>. Baker, Harman and Pintz proved that there is a prime in the interval <math>[x-x^{0.525},\,x]</math> for all sufficiently large <math>x</math>.<ref name="baker">{{Citation |last1=Baker |first1=R. C. |first2=G. |last2=Harman |first3=J. |last3=Pintz |year=2001 |title=The difference between consecutive primes, II |journal=Proceedings of the London Mathematical Society |volume=83 |issue=3 |pages=532β562 |doi=10.1112/plms/83.3.532 |citeseerx=10.1.1.360.3671 |s2cid=8964027 }}</ref> Dudek proved that for all <math>n \ge e^{e^{33.3}}</math>, there is at least one prime between <math>n^3</math> and <math>(n + 1)^3</math>.<ref>{{Citation | last = Dudek | first = Adrian | title = An explicit result for primes between cubes | journal = Funct. Approx. | volume = 55 | issue = 2 | date = December 2016 | pages = 177β197 | doi = 10.7169/facm/2016.55.2.3 | arxiv = 1401.4233 | s2cid = 119143089 }}</ref> Dudek also proved that the [[Riemann hypothesis]] implies that for all <math>x \geq 2</math> there is a prime <math>p</math> satisfying :<math>x - \frac{4}{\pi} \sqrt{x} \log x < p \leq x.</math><ref>{{Citation| last=Dudek|first=Adrian W.|date=21 August 2014|title=On the Riemann hypothesis and the difference between primes|journal=International Journal of Number Theory|volume=11|issue=3|pages=771β778|doi=10.1142/S1793042115500426|issn=1793-0421|arxiv=1402.6417|bibcode=2014arXiv1402.6417D|s2cid=119321107}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)