Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bipartite graph
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Degree=== For a vertex, the number of adjacent vertices is called the [[degree (graph theory)|degree]] of the vertex and is denoted <math>\deg v</math>. The [[degree sum formula]] for a bipartite graph states that<ref>{{citation|title=Combinatorial Problems and Exercises|first=László|last=Lovász|author-link=László Lovász|edition=2nd|publisher=Elsevier|year=2014|isbn=9780080933092|page=281|url=https://books.google.com/books?id=wvHiBQAAQBAJ&pg=PA281}}</ref> :<math>\sum_{v \in V} \deg v = \sum_{u \in U} \deg u = |E|\, .</math> The degree sequence of a bipartite graph is the pair of lists each containing the degrees of the two parts <math>U</math> and <math>V</math>. For example, the complete bipartite graph ''K''<sub>3,5</sub> has degree sequence <math>(5,5,5), (3,3,3,3,3)</math>. [[Graph isomorphism|Isomorphic]] bipartite graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a bipartite graph; in some cases, non-isomorphic bipartite graphs may have the same degree sequence. The [[bipartite realization problem]] is the problem of finding a simple bipartite graph with the degree sequence being two given lists of natural numbers. (Trailing zeros may be ignored since they are trivially realized by adding an appropriate number of isolated vertices to the digraph.)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)