Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Boolean function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Derived functions === A Boolean function may be decomposed using [[Boole's expansion theorem]] in positive and negative ''Shannon'' ''cofactors'' ([[Shannon expansion]]), which are the (''k''−1)-ary functions resulting from fixing one of the arguments (to 0 or 1). The general ''k''-ary functions obtained by imposing a linear constraint on a set of inputs (a linear subspace) are known as ''subfunctions''.<ref name=":1">{{Cite book|last1=Tarannikov|first1=Yuriy|last2=Korolev|first2=Peter|last3=Botev|first3=Anton|title=Advances in Cryptology — ASIACRYPT 2001 |chapter=Autocorrelation Coefficients and Correlation Immunity of Boolean Functions |date=2001|editor-last=Boyd|editor-first=Colin|series=Lecture Notes in Computer Science|volume=2248|language=en|location=Berlin, Heidelberg|publisher=Springer|pages=460–479|doi=10.1007/3-540-45682-1_27|isbn=978-3-540-45682-7|doi-access=free}}</ref> The ''[[Boolean derivative]]'' of the function to one of the arguments is a (''k''−1)-ary function that is true when the output of the function is sensitive to the chosen input variable; it is the XOR of the two corresponding cofactors. A derivative and a cofactor are used in a [[Reed–Muller expansion]]. The concept can be generalized as a ''k''-ary derivative in the direction dx, obtained as the difference (XOR) of the function at x and x + dx.<ref name=":1" /> The ''[[Zhegalkin polynomial#Möbius transformation|Möbius transform]]'' (or ''Boole–Möbius transform'') of a Boolean function is the set of coefficients of its [[Zhegalkin polynomial|polynomial]] ([[algebraic normal form]]), as a function of the monomial exponent vectors. It is a [[Involution (mathematics)|self-inverse]] transform. It can be calculated efficiently using a [[Butterfly diagram|butterfly algorithm]] ("''Fast Möbius Transform''"), analogous to the [[Fast Fourier transform|Fast Fourier Transform]].<ref>{{Citation|last=Carlet|first=Claude|title=Boolean Functions for Cryptography and Error-Correcting Codes|date=2010|url=https://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf|work=Boolean Models and Methods in Mathematics, Computer Science, and Engineering|pages=257–397|editor-last=|editor-first=|series=Encyclopedia of Mathematics and its Applications|place=Cambridge|publisher=Cambridge University Press|isbn=978-0-521-84752-0|access-date=2021-05-17|editor2-last=|editor2-first=}}</ref> ''Coincident'' Boolean functions are equal to their Möbius transform, i.e. their truth table (minterm) values equal their algebraic (monomial) coefficients.<ref>{{Cite journal|last1=Pieprzyk|first1=Josef|last2=Wang|first2=Huaxiong|last3=Zhang|first3=Xian-Mo|date=2011-05-01|title=Mobius transforms, coincident Boolean functions and non-coincidence property of Boolean functions|url=https://doi.org/10.1080/00207160.2010.509428|journal=International Journal of Computer Mathematics|volume=88|issue=7|pages=1398–1416|doi=10.1080/00207160.2010.509428|s2cid=9580510 |issn=0020-7160}}</ref> There are 2^2^(''k''−1) coincident functions of ''k'' arguments.<ref>{{Cite journal|last1=Nitaj|first1=Abderrahmane|last2=Susilo|first2=Willy|last3=Tonien|first3=Joseph|date=2017-10-01|title=Dirichlet product for boolean functions|url=https://doi.org/10.1007/s12190-016-1037-4|journal=Journal of Applied Mathematics and Computing|language=en|volume=55|issue=1|pages=293–312|doi=10.1007/s12190-016-1037-4|s2cid=16760125 |issn=1865-2085}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)