Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical basis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Example=== This example illustrates a canonical basis with two Jordan chains. Unfortunately, it is a little difficult to construct an interesting example of low order.<ref>{{harvtxt|Nering|1970|pp=122,123}}</ref> The matrix :<math>A = \begin{pmatrix} 4 & 1 & 1 & 0 & 0 & -1 \\ 0 & 4 & 2 & 0 & 0 & 1 \\ 0 & 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix}</math> has eigenvalues <math> \lambda_1 = 4 </math> and <math> \lambda_2 = 5 </math> with algebraic multiplicities <math> \mu_1 = 4 </math> and <math> \mu_2 = 2 </math>, but [[geometric multiplicity|geometric multiplicities]] <math> \gamma_1 = 1 </math> and <math> \gamma_2 = 1 </math>. For <math> \lambda_1 = 4,</math> we have <math> n - \mu_1 = 6 - 4 = 2, </math> :<math> (A - 4I) </math> has rank 5, :<math> (A - 4I)^2 </math> has rank 4, :<math> (A - 4I)^3 </math> has rank 3, :<math> (A - 4I)^4 </math> has rank 2. Therefore <math>m_1 = 4.</math> :<math> \rho_4 = \operatorname{rank}(A - 4I)^3 - \operatorname{rank}(A - 4I)^4 = 3 - 2 = 1,</math> :<math> \rho_3 = \operatorname{rank}(A - 4I)^2 - \operatorname{rank}(A - 4I)^3 = 4 - 3 = 1,</math> :<math> \rho_2 = \operatorname{rank}(A - 4I)^1 - \operatorname{rank}(A - 4I)^2 = 5 - 4 = 1,</math> :<math> \rho_1 = \operatorname{rank}(A - 4I)^0 - \operatorname{rank}(A - 4I)^1 = 6 - 5 = 1.</math> Thus, a canonical basis for <math>A</math> will have, corresponding to <math> \lambda_1 = 4,</math> one generalized eigenvector each of ranks 4, 3, 2 and 1. For <math> \lambda_2 = 5,</math> we have <math> n - \mu_2 = 6 - 2 = 4, </math> :<math> (A - 5I) </math> has rank 5, :<math> (A - 5I)^2 </math> has rank 4. Therefore <math>m_2 = 2.</math> :<math> \rho_2 = \operatorname{rank}(A - 5I)^1 - \operatorname{rank}(A - 5I)^2 = 5 - 4 = 1,</math> :<math> \rho_1 = \operatorname{rank}(A - 5I)^0 - \operatorname{rank}(A - 5I)^1 = 6 - 5 = 1.</math> Thus, a canonical basis for <math>A</math> will have, corresponding to <math> \lambda_2 = 5,</math> one generalized eigenvector each of ranks 2 and 1. A canonical basis for <math>A</math> is :<math> \left\{ \mathbf x_1, \mathbf x_2, \mathbf x_3, \mathbf x_4, \mathbf y_1, \mathbf y_2 \right\} = \left\{ \begin{pmatrix} -4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -27 \\ -4 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 25 \\ -25 \\ -2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 36 \\ -12 \\ -2 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -8 \\ -4 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}. </math> <math> \mathbf x_1 </math> is the ordinary eigenvector associated with <math> \lambda_1 </math>. <math> \mathbf x_2, \mathbf x_3 </math> and <math> \mathbf x_4 </math> are generalized eigenvectors associated with <math> \lambda_1 </math>. <math> \mathbf y_1 </math> is the ordinary eigenvector associated with <math> \lambda_2 </math>. <math> \mathbf y_2 </math> is a generalized eigenvector associated with <math> \lambda_2 </math>. A matrix <math>J</math> in Jordan normal form, similar to <math>A</math> is obtained as follows: :<math> M = \begin{pmatrix} \mathbf x_1 & \mathbf x_2 & \mathbf x_3 & \mathbf x_4 & \mathbf y_1 & \mathbf y_2 \end{pmatrix} = \begin{pmatrix} -4 & -27 & 25 & 0 & 3 & -8 \\ 0 & -4 & -25 & 36 & 2 & -4 \\ 0 & 0 & -2 & -12 & 1 & -1 \\ 0 & 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}, </math> :<math> J = \begin{pmatrix} 4 & 1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 & 5 \end{pmatrix}, </math> where the matrix <math>M</math> is a [[generalized modal matrix]] for <math>A</math> and <math>AM = MJ</math>.<ref>{{harvtxt|Bronson|1970|p=203}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)