Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Carlson symmetric form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
= \int _{\sqrt{x}}^{\infty} \frac{du}{u^{2} - x + y} = \begin{cases} \frac{\arccos \sqrt{{x}/{y}}}{\sqrt{y - x}}, & x < y \\ \frac{1}{\sqrt{y}}, & x = y \\ \frac{\operatorname{arcosh} \sqrt{{x}/{y}}}{\sqrt{x - y}}, & x > y \\ \end{cases}</math> Similarly, when at least two of the first three arguments of <math>R_J</math> are the same, :<math>R_{J}(x,y,y,p) = 3 \int _{\sqrt{x}}^{\infty} \frac{du}{(u^{2} - x + y) (u^{2} - x + p)} = \begin{cases} \frac{3}{p - y} (R_{C}(x,y) - R_{C}(x,p)), & y \ne p \\ \frac{3}{2 (y - x)} \left( R_{C}(x,y) - \frac{1}{y} \sqrt{x}\right), & y = p \ne x \\ \frac{1}{y^{{3}/{2}}}, &y = p = x \\ \end{cases}</math> ==Properties== ===Homogeneity=== By substituting in the integral definitions <math>t = \kappa u</math> for any constant <math>\kappa</math>, it is found that :<math>R_F\left(\kappa x,\kappa y,\kappa z\right)=\kappa^{-1/2}R_F(x,y,z)</math> :<math>R_J\left(\kappa x,\kappa y,\kappa z,\kappa p\right)=\kappa^{-3/2}R_J(x,y,z,p)</math> ===Duplication theorem=== :<math>R_F(x,y,z)=2R_F(x+\lambda,y+\lambda,z+\lambda)= R_F\left(\frac{x+\lambda}{4},\frac{y+\lambda}{4},\frac{z+\lambda}{4}\right),</math> where <math>\lambda=\sqrt{x}\sqrt{y}+\sqrt{y}\sqrt{z}+\sqrt{z}\sqrt{x}</math>. :<math>\begin{align}R_{J}(x,y,z,p) & = 2 R_{J}(x + \lambda,y + \lambda,z + \lambda,p + \lambda) + 6 R_{C}(d^{2},d^{2} + (p - x) (p - y) (p - z)) \\ & = \frac{1}{4} R_{J}\left( \frac{x + \lambda}{4},\frac{y + \lambda}{4},\frac{z + \lambda}{4},\frac{p + \lambda}{4}\right) + 6 R_{C}(d^{2},d^{2} + (p - x) (p - y) (p - z)) \end{align}</math><ref name="Carlson94"/> where <math>d = (\sqrt{p} + \sqrt{x}) (\sqrt{p} + \sqrt{y}) (\sqrt{p} + \sqrt{z})</math> and <math>\lambda =\sqrt{x}\sqrt{y}+\sqrt{y}\sqrt{z}+\sqrt{z}\sqrt{x}</math> ==Series Expansion== In obtaining a [[Taylor series]] expansion for <math>R_{F}</math> or <math>R_{J}</math> it proves convenient to expand about the mean value of the several arguments. So for <math>R_{F}</math>, letting the mean value of the arguments be <math>A = (x + y + z)/3</math>, and using homogeneity, define <math>\Delta x</math>, <math>\Delta y</math> and <math>\Delta z</math> by :<math>\begin{align}R_{F}(x,y,z) & = R_{F}(A (1 - \Delta x),A (1 - \Delta y),A (1 - \Delta z)) \\ & = \frac{1}{\sqrt{A}} R_{F}(1 - \Delta x,1 - \Delta y,1 - \Delta z) \end{align}</math> that is <math>\Delta x = 1 - x/A</math> etc. The differences <math>\Delta x</math>, <math>\Delta y</math> and <math>\Delta z</math> are defined with this sign (such that they are ''subtracted''), in order to be in agreement with Carlson's papers. Since <math>R_{F}(x,y,z)</math> is symmetric under permutation of <math>x</math>, <math>y</math> and <math>z</math>, it is also symmetric in the quantities <math>\Delta x</math>, <math>\Delta y</math> and <math>\Delta z</math>. It follows that both the integrand of <math>R_{F}</math> and its integral can be expressed as functions of the [[elementary symmetric polynomial]]s in <math>\Delta x</math>, <math>\Delta y</math> and <math>\Delta z</math> which are :<math>E_{1} = \Delta x + \Delta y + \Delta z = 0</math> :<math>E_{2} = \Delta x \Delta y + \Delta y \Delta z + \Delta z \Delta x</math> :<math>E_{3} = \Delta x \Delta y \Delta z</math> Expressing the integrand in terms of these polynomials, performing a multidimensional Taylor expansion and integrating term-by-term... :<math>\begin{align}R_{F}(x,y,z) & = \frac{1}{2 \sqrt{A}} \int _{0}^{\infty}\frac{1}{\sqrt{(t + 1)^{3} - (t + 1)^{2} E_{1} + (t + 1) E_{2} - E_{3}}} dt \\ & = \frac{1}{2 \sqrt{A}} \int _{0}^{\infty}\left( \frac{1}{(t + 1)^{\frac{3}{2}}} - \frac{E_{2}}{2 (t + 1)^{\frac{7}{2}}} + \frac{E_{3}}{2 (t + 1)^{\frac{9}{2}}} + \frac{3 E_{2}^{2}}{8 (t + 1)^{\frac{11}{2}}} - \frac{3 E_{2} E_{3}}{4 (t + 1)^{\frac{13}{2}}} + O(E_{1}) + O(\Delta^{6})\right) dt \\ & = \frac{1}{\sqrt{A}} \left( 1 - \frac{1}{10} E_{2} + \frac{1}{14} E_{3} + \frac{1}{24} E_{2}^{2} - \frac{3}{44} E_{2} E_{3} + O(E_{1}) + O(\Delta^{6})\right) \end{align}</math> The advantage of expanding about the mean value of the arguments is now apparent; it reduces <math>E_{1}</math> identically to zero, and so eliminates all terms involving <math>E_{1}</math> - which otherwise would be the most numerous. An ascending series for <math>R_{J}</math> may be found in a similar way. There is a slight difficulty because <math>R_{J}</math> is not fully symmetric; its dependence on its fourth argument, <math>p</math>, is different from its dependence on <math>x</math>, <math>y</math> and <math>z</math>. This is overcome by treating <math>R_{J}</math> as a fully symmetric function of ''five'' arguments, two of which happen to have the same value <math>p</math>. The mean value of the arguments is therefore taken to be :<math>A = \frac{x + y + z + 2 p}{5}</math> and the differences <math>\Delta x</math>, <math>\Delta y</math> <math>\Delta z</math> and <math>\Delta p</math> defined by :<math>\begin{align}R_{J}(x,y,z,p) & = R_{J}(A (1 - \Delta x),A (1 - \Delta y),A (1 - \Delta z),A (1 - \Delta p)) \\ & = \frac{1}{A^{\frac{3}{2}}} R_{J}(1 - \Delta x,1 - \Delta y,1 - \Delta z,1 - \Delta p) \end{align}</math> The [[elementary symmetric polynomial]]s in <math>\Delta x</math>, <math>\Delta y</math>, <math>\Delta z</math>, <math>\Delta p</math> and (again) <math>\Delta p</math> are in full :<math>E_{1} = \Delta x + \Delta y + \Delta z + 2 \Delta p = 0</math> :<math>E_{2} = \Delta x \Delta y + \Delta y \Delta z + 2 \Delta z \Delta p + \Delta p^{2} + 2 \Delta p \Delta x + \Delta x \Delta z + 2 \Delta y \Delta p</math> :<math>E_{3} = \Delta z \Delta p^{2} + \Delta x \Delta p^{2} + 2 \Delta x \Delta y \Delta p + \Delta x \Delta y \Delta z + 2 \Delta y \Delta z \Delta p + \Delta y \Delta p^{2} + 2 \Delta x \Delta z \Delta p</math> :<math>E_{4} = \Delta y \Delta z \Delta p^{2} + \Delta x \Delta z \Delta p^{2} + \Delta x \Delta y \Delta p^{2} + 2 \Delta x \Delta y \Delta z \Delta p</math> :<math>E_{5} = \Delta x \Delta y \Delta z \Delta p^{2}</math> However, it is possible to simplify the formulae for <math>E_{2}</math>, <math>E_{3}</math> and <math>E_{4}</math> using the fact that <math>E_{1} = 0</math>. Expressing the integrand in terms of these polynomials, performing a multidimensional Taylor expansion and integrating term-by-term as before... :<math>\begin{align}R_{J}(x,y,z,p) & = \frac{3}{2 A^{\frac{3}{2}}} \int _{0}^{\infty}\frac{1}{\sqrt{(t + 1)^{5} - (t + 1)^{4} E_{1} + (t + 1)^{3} E_{2} - (t + 1)^{2} E_{3} + (t + 1) E_{4} - E_{5}}} dt \\ & = \frac{3}{2 A^{\frac{3}{2}}} \int _{0}^{\infty}\left( \frac{1}{(t + 1)^{\frac{5}{2}}} - \frac{E_{2}}{2 (t + 1)^{\frac{9}{2}}} + \frac{E_{3}}{2 (t + 1)^{\frac{11}{2}}} + \frac{3 E_{2}^{2} - 4 E_{4}}{8 (t + 1)^{\frac{13}{2}}} + \frac{2 E_{5} - 3 E_{2} E_{3}}{4 (t + 1)^{\frac{15}{2}}} + O(E_{1}) + O(\Delta^{6})\right) dt \\ & = \frac{1}{A^{\frac{3}{2}}} \left( 1 - \frac{3}{14} E_{2} + \frac{1}{6} E_{3} + \frac{9}{88} E_{2}^{2} - \frac{3}{22} E_{4} - \frac{9}{52} E_{2} E_{3} + \frac{3}{26} E_{5} + O(E_{1}) + O(\Delta^{6})\right) \end{align}</math> As with <math>R_{J}</math>, by expanding about the mean value of the arguments, more than half the terms (those involving <math>E_{1}</math>) are eliminated. ==Negative arguments== In general, the arguments x, y, z of Carlson's integrals may not be real and negative, as this would place a [[branch point]] on the path of integration, making the integral ambiguous. However, if the second argument of <math>R_C</math>, or the fourth argument, p, of <math>R_J</math> is negative, then this results in a [[simple pole]] on the path of integration. In these cases the [[Cauchy principal value]] (finite part) of the integrals may be of interest; these are :<math>\mathrm{p.v.}\; R_C(x, -y) = \sqrt{\frac{x}{x + y}}\,R_C(x + y, y),</math> and :<math>\begin{align}\mathrm{p.v.}\; R_{J}(x,y,z,-p) & = \frac{(q - y) R_{J}(x,y,z,q) - 3 R_{F}(x,y,z) + 3 \sqrt{y} R_{C}(x z,- p q)}{y + p} \\ & = \frac{(q - y) R_{J}(x,y,z,q) - 3 R_{F}(x,y,z) + 3 \sqrt{\frac{x y z}{x z + p q}} R_{C}(x z + p q,p q)}{y + p} \end{align}</math> where :<math>q = y + \frac{(z - y) (y - x)}{y + p}.</math> which must be greater than zero for <math>R_{J}(x,y,z,q)</math> to be evaluated. This may be arranged by permuting x, y and z so that the value of y is between that of x and z. ==Numerical evaluation== The duplication theorem can be used for a fast and robust evaluation of the Carlson symmetric form of elliptic integrals and therefore also for the evaluation of Legendre-form of elliptic integrals. Let us calculate <math>R_F(x,y,z)</math>: first, define <math>x_0=x</math>, <math>y_0=y</math> and <math>z_0=z</math>. Then iterate the series :<math>\lambda_n=\sqrt{x_n}\sqrt{y_n}+\sqrt{y_n}\sqrt{z_n}+\sqrt{z_n}\sqrt{x_n},</math> :<math>x_{n+1}=\frac{x_n+\lambda_n}{4}, y_{n+1}=\frac{y_n+\lambda_n}{4}, z_{n+1}=\frac{z_n+\lambda_n}{4}</math> until the desired precision is reached: if <math>x</math>, <math>y</math> and <math>z</math> are non-negative, all of the series will converge quickly to a given value, say, <math>\mu</math>. Therefore, :<math>R_F\left(x,y,z\right)=R_F\left(\mu,\mu,\mu\right)=\mu^{-1/2}.</math> Evaluating <math>R_C(x,y)</math> is much the same due to the relation :<math>R_C\left(x,y\right)=R_F\left(x,y,y\right).</math> ==References and External links== <references> <ref name="Carlson94">{{cite journal | last = Carlson | first = Bille C. | arxiv = math/9409227v1 | title = Numerical computation of real or complex elliptic integrals | journal = Numerical Algorithms | date = 1994 | volume = 10 | pages = 13β26 | doi = 10.1007/BF02198293 }}</ref> </references> *[https://arxiv.org/abs/math/9310223v1 B. C. Carlson, John L. Gustafson 'Asymptotic approximations for symmetric elliptic integrals' 1993 arXiv] *[https://arxiv.org/abs/math/9409227v1 B. C. Carlson 'Numerical Computation of Real Or Complex Elliptic Integrals' 1994 arXiv] *[http://dlmf.nist.gov/19#PT3 B. C. Carlson 'Elliptic Integrals:Symmetric Integrals' in Chap. 19 of ''Digital Library of Mathematical Functions''. Release date 2010-05-07. National Institute of Standards and Technology.] *[http://dlmf.nist.gov/about/bio/BCCarlson 'Profile: Bille C. Carlson' in ''Digital Library of Mathematical Functions''. National Institute of Standards and Technology.] *{{Citation | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | publication-place=New York | isbn=978-0-521-88068-8 | chapter=Section 6.12. Elliptic Integrals and Jacobian Elliptic Functions | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=309 | access-date=2011-08-10 | archive-date=2011-08-11 | archive-url=https://web.archive.org/web/20110811154417/http://apps.nrbook.com/empanel/index.html#pg=309 | url-status=dead }} *[[Fortran]] code from [[SLATEC]] for evaluating [http://www.netlib.org/slatec/src/drf.f RF], [http://www.netlib.org/slatec/src/drj.f RJ], [http://www.netlib.org/slatec/src/drc.f RC], [http://www.netlib.org/slatec/src/drd.f RD], [[Category:Elliptic functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)