Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Carmichael number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Factorizations === Carmichael numbers have at least three positive prime factors. The first Carmichael numbers with <math>k = 3, 4, 5, \ldots</math> prime factors are {{OEIS|id=A006931}}: {| class="wikitable" |- ! ''k'' !! |- | 3 || <math>561 = 3 \cdot 11 \cdot 17\,</math> |- | 4 || <math>41041 = 7 \cdot 11 \cdot 13 \cdot 41\,</math> |- | 5 || <math>825265 = 5 \cdot 7 \cdot 17 \cdot 19 \cdot 73\,</math> |- | 6 || <math>321197185 = 5 \cdot 19 \cdot 23 \cdot 29 \cdot 37 \cdot 137\,</math> |- | 7 || <math>5394826801 = 7 \cdot 13 \cdot 17 \cdot 23 \cdot 31 \cdot 67 \cdot 73\,</math> |- | 8 || <math>232250619601 = 7 \cdot 11 \cdot 13 \cdot 17 \cdot 31 \cdot 37 \cdot 73 \cdot 163\,</math> |- | 9 || <math>9746347772161 = 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 31 \cdot 37 \cdot 41 \cdot 641\,</math> |} The first Carmichael numbers with 4 prime factors are {{OEIS|id=A074379}}: {| class="wikitable" |- ! ''i'' !! |- | 1 || <math>41041 = 7 \cdot 11 \cdot 13 \cdot 41\,</math> |- | 2 || <math>62745 = 3 \cdot 5 \cdot 47 \cdot 89\,</math> |- | 3 || <math>63973 = 7 \cdot 13 \cdot 19 \cdot 37\,</math> |- | 4 || <math>75361 = 11 \cdot 13 \cdot 17 \cdot 31\,</math> |- | 5 || <math>101101 = 7 \cdot 11 \cdot 13 \cdot 101\,</math> |- | 6 || <math>126217 = 7 \cdot 13 \cdot 19 \cdot 73\,</math> |- | 7 || <math>172081 = 7 \cdot 13 \cdot 31 \cdot 61\,</math> |- | 8 || <math>188461 = 7 \cdot 13 \cdot 19 \cdot 109\,</math> |- | 9 || <math>278545 = 5 \cdot 17 \cdot 29 \cdot 113\,</math> |- | 10 || <math>340561 = 13 \cdot 17 \cdot 23 \cdot 67\,</math> |} The second Carmichael number (1105) can be expressed as the sum of two squares in more ways than any smaller number. The third Carmichael number (1729) is the [[1729 (number)|Hardy-Ramanujan Number]]: the smallest number that can be expressed as the [[sum of two cubes]] (of positive numbers) in two different ways.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)