Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cayley–Hamilton theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Determinant and inverse matrix=== {{see also|Determinant#Relation to eigenvalues and trace|Characteristic polynomial#Properties}} For a general {{math|''n'' × ''n''}} [[invertible matrix]] {{mvar|A}}, i.e., one with nonzero determinant, {{mvar|A}}<sup>−1</sup> can thus be written as an {{nowrap|{{math|(''n'' − 1)}}-th}} order [[polynomial expression]] in {{mvar|A}}: As indicated, the Cayley–Hamilton theorem amounts to the identity {{Equation box 1 |indent =:: |equation = <math>p(A)=A^n+c_{n-1}A^{n-1}+\cdots+c_1A+(-1)^n\det(A)I_n =0.</math> |cellpadding= 6 |border |border colour = #0073CF |bgcolor=#F9FFF7}} The coefficients {{math|''c''<sub>''i''</sub>}} are given by the [[elementary symmetric polynomial]]s of the [[eigenvalue]]s of {{mvar|A}}. Using [[Newton identities]], the elementary symmetric polynomials can in turn be expressed in terms of [[power sum symmetric polynomial]]s of the eigenvalues: <math display="block">s_k = \sum_{i=1}^n \lambda_i^k = \operatorname{tr}(A^k),</math> where {{math|tr(''A''<sup>''k''</sup>)}} is the [[Trace (linear algebra)|trace]] of the matrix {{mvar|A<sup>''k''</sup>}}. Thus, we can express {{math|''c''<sub>''i''</sub>}} in terms of the trace of powers of {{mvar|A}}. In general, the formula for the coefficients {{math|''c''<sub>''i''</sub>}} is given in terms of complete exponential [[Bell polynomials]] as<ref group="nb">See Sect. 2 of {{harvtxt|Krivoruchenko|2016}}. An explicit expression for the coefficients {{math|''c''<sub>''i''</sub>}} is provided by {{harvtxt| Kondratyuk | Krivoruchenko |1992}}: <math display="block">c_i = \sum_{ k_1,k_2,\ldots ,k_n}\prod_{l=1}^{n} \frac{(-1)^{k_l+1}}{l^{k_l} k_l!}\operatorname{tr}(A^l)^{k_l},</math> where the sum is taken over the sets of all integer partitions {{math|''k''<sub>''l''</sub> ≥ 0}} satisfying the equation <math display="block">\sum_{l=1}^{n}lk_{l} = n-i.</math></ref> <math display="block">c_{n-k} = \frac{(-1)^{k}}{k!} B_k(s_1, -1! s_2, 2! s_3, \ldots, (-1)^{k-1}(k-1)! s_k).</math> In particular, the determinant of {{math|''A''}} equals {{math|(−1)<sup>''n''</sup>''c''<sub>0</sub>}}. Thus, the determinant can be written as the [[trace identity]]: <math display="block">\det(A) = \frac{1}{n!} B_n(s_1, -1! s_2, 2! s_3, \ldots, (-1)^{n-1}(n-1)! s_n).</math> Likewise, the characteristic polynomial can be written as <math display="block">-(-1)^n\det(A)I_n = A(A^{n-1}+c_{n-1}A^{n-2}+\cdots+c_{1}I_n),</math> and, by multiplying both sides by {{math|''A''<sup>−1</sup>}} (note {{math|1=−(−1)<sup>''n''</sup> = (−1)<sup>''n''−1</sup>}}), one is led to an expression for the [[inverse matrix|inverse]] of {{mvar|A}} as a trace identity, <math display="block"> \begin{align} A^{-1} & = \frac{(-1)^{n-1}}{\det A}(A^{n-1}+c_{n-1}A^{n-2}+\cdots+c_{1}I_n), \\[5pt] & = \frac{1}{\det A}\sum_{k=0}^{n-1} (-1)^{n+k-1}\frac{A^{n-k-1}}{k!} B_k(s_1, -1! s_2, 2! s_3, \ldots, (-1)^{k-1}(k-1)! s_k). \end{align} </math> Another method for obtaining these coefficients {{math|''c''<sub>''k''</sub>}} for a general {{math|''n'' × ''n''}} matrix, provided no root be zero, relies on the following alternative [[Matrix exponential#The determinant of the matrix exponential|expression for the determinant]], <math display="block">p(\lambda)= \det (\lambda I_n -A) = \lambda^n \exp (\operatorname{tr} (\log (I_n - A/\lambda))).</math> Hence, by virtue of the [[Mercator series]], <math display="block">p(\lambda)= \lambda^n \exp \left( -\operatorname{tr} \sum_{m=1}^\infty {({A\over\lambda})^m \over m} \right),</math> where the exponential ''only'' needs be expanded to order {{math|''λ''<sup>−''n''</sup>}}, since {{math|''p''(''λ'')}} is of order {{math|''n''}}, the net negative powers of {{math|''λ''}} automatically vanishing by the C–H theorem. (Again, this requires a ring containing the [[rational number]]s.) [[Derivative|Differentiation]] of this expression with respect to {{mvar|λ}} allows one to express the coefficients of the characteristic polynomial for general {{mvar|n}} as determinants of {{math|''m'' × ''m''}} matrices,<ref group="nb">See, e.g., p. 54 of {{harvnb|Brown|1994}}, which solves [[Jacobi's formula]], <math display="block">\frac{\partial p(\lambda)}{\partial \lambda} = p(\lambda) \sum^\infty _{m=0}\lambda ^{-(m+1)} \operatorname{tr}A^m = p(\lambda) ~ \operatorname{tr} \frac{I}{\lambda I -A}\equiv\operatorname{tr} B~, </math> where {{mvar|B}} is the adjugate matrix of the next section. There also exists an equivalent, related recursive algorithm introduced by [[Urbain Le Verrier]] and [[Dmitry Konstantinovich Faddeev]]—the [[Faddeev–LeVerrier algorithm]], which reads <math display="block">\begin{align} M_0 &\equiv O & c_n &= 1 \qquad &(k=0) \\[5pt] M_k &\equiv AM_{k-1} -\frac{1}{k-1}(\operatorname{tr}(AM_{k-1})) I \qquad \qquad & c_{n-k} &= -\frac 1 k \operatorname{tr}(AM_k) \qquad &k=1,\ldots ,n ~. \end{align}</math> (see, e.g., {{harvnb|Gantmacher|1960|p=88}}.) Observe {{math|''A''<sup>−1</sup> {{=}} −''M''<sub>''n''</sub> /''c''<sub>0</sub>}} as the recursion terminates. See the algebraic proof in the following section, which relies on the modes of the adjugate, {{math|''B''<sub>''k''</sub> ≡ ''M''<sub>''n''−''k''</sub>}}. Specifically, <math>(\lambda I-A) B = I p(\lambda)</math> and the above derivative of {{mvar|p}} when one traces it yields <math display="block">\lambda p' -n p =\operatorname{tr} (AB)~,</math> ({{harvnb|Hou|1998}}), and the above recursions, in turn.</ref> <math display="block">c_{n-m} = \frac{(-1)^m}{m!} \begin{vmatrix} \operatorname{tr}A & m-1 & 0 & \cdots \\ \operatorname{tr}A^2 &\operatorname{tr}A & m-2 &\cdots \\ \vdots & \vdots & & & \vdots \\ \operatorname{tr}A^{m-1} &\operatorname{tr}A^{m-2}& \cdots & \cdots & 1 \\ \operatorname{tr}A^m &\operatorname{tr}A^{m-1}& \cdots & \cdots & \operatorname{tr}A \end{vmatrix} ~.</math> ; Examples For instance, the first few Bell polynomials are {{math|''B''<sub>0</sub>}} = 1, {{math|1=''B''<sub>1</sub>(''x''<sub>1</sub>) = ''x''<sub>1</sub>}}, {{math|1=''B''<sub>2</sub>(''x''<sub>1</sub>, ''x''<sub>2</sub>) = ''x''{{su|b=1|p=2}} + ''x''<sub>2</sub>}}, and {{math|1=''B''<sub>3</sub>(''x''<sub>1</sub>, ''x''<sub>2</sub>, ''x''<sub>3</sub>) = ''x''{{su|b=1|p=3}} + 3 ''x''<sub>1</sub>''x''<sub>2</sub> + ''x''<sub>3</sub>}}. Using these to specify the coefficients {{math|''c<sub>i</sub>''}} of the characteristic polynomial of a {{math|2 × 2}} matrix yields <math display="block">\begin{align} c_2 = B_0 = 1, \\[4pt] c_1 = \frac{-1}{1!} B_1(s_1) = - s_1 = - \operatorname{tr}(A), \\[4pt] c_0 = \frac{1}{2!} B_2(s_1, -1! s_2) = \frac{1}{2}(s_1^2 - s_2) = \frac{1}{2}((\operatorname{tr}(A))^2 - \operatorname{tr}(A^2)). \end{align}</math> The coefficient {{math|''c''<sub>0</sub>}} gives the determinant of the {{math|2 × 2}} matrix, {{math|''c''<sub>1</sub>}} minus its trace, while its inverse is given by <math display="block"> A^{-1} = \frac{-1}{\det A}(A + c_1 I_2) = \frac{-2(A - \operatorname{tr}(A) I_2)}{(\operatorname{tr}(A))^2 - \operatorname{tr}(A^2)}.</math> It is apparent from the general formula for ''c''<sub>''n''−''k''</sub>, expressed in terms of Bell polynomials, that the expressions <math display="block">-\operatorname{tr}(A)\quad \text{and} \quad \tfrac 1 2 (\operatorname{tr}(A)^2 - \operatorname{tr}(A^2))</math> always give the coefficients {{math|''c''<sub>''n''−1</sub>}} of {{math|''λ''<sup>''n''−1</sup>}} and {{math|''c''<sub>''n''−2</sub>}} of {{math|''λ''<sup>''n''−2</sup>}} in the characteristic polynomial of any {{math|''n'' × ''n''}} matrix, respectively. So, for a {{math|3 × 3}} matrix {{mvar|A}}, the statement of the Cayley–Hamilton theorem can also be written as <math display="block">A^3- (\operatorname{tr}A)A^2+\frac{1}{2}\left((\operatorname{tr}A)^2-\operatorname{tr}(A^2)\right)A-\det(A)I_3=O,</math> where the right-hand side designates a {{math|3 × 3}} matrix with all entries reduced to zero. Likewise, this determinant in the {{math|1=''n'' = 3}} case, is now <math display="block">\begin{align} \det(A) &= \frac{1}{3!} B_3(s_1, -1! s_2, 2! s_3) = \frac{1}{6}(s_1^3 + 3 s_1 (-s_2) + 2 s_3) \\[5pt] &= \frac{1}{6} \left [ (\operatorname{tr}A)^3-3\operatorname{tr}(A^2)(\operatorname{tr}A)+2\operatorname{tr}(A^3) \right ]. \end{align}</math> This expression gives the negative of coefficient {{math|''c''<sub>''n''−3</sub>}} of {{math|''λ''<sup>''n''−3</sup>}} in the general case, as seen below. Similarly, one can write for a {{math|4 × 4}} matrix {{mvar|A}}, <math display="block"> A^4-(\operatorname{tr}A)A^3 + \tfrac{1}{2}\left[(\operatorname{tr}A)^2-\operatorname{tr}(A^2)\right]A^2 - \tfrac{1}{6}\left[ (\operatorname{tr}A)^3-3\operatorname{tr}(A^2)(\operatorname{tr}A)+2\operatorname{tr}(A^3)\right] A + \det(A)I_4 = O,</math> where, now, the determinant is {{math|''c''<sub>''n''−4</sub>}}, <math display="block">\tfrac{1}{24}\! \left [ (\operatorname{tr}A)^4-6 \operatorname{tr}(A^2)(\operatorname{tr}A)^2 + 3\left(\operatorname{tr}(A^2)\right)^2 + 8\operatorname{tr}(A^3)\operatorname{tr}(A) -6\operatorname{tr}(A^4) \right ],</math> and so on for larger matrices. The increasingly complex expressions for the coefficients {{math|''c''<sub>''k''</sub>}} is deducible from [[Newton's identities]] or the [[Faddeev–LeVerrier algorithm]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)