Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Central limit theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===CLT for the sum of a random number of random variables=== Rather than summing an integer number <math>n</math> of random variables and taking <math>n \to \infty</math>, the sum can be of a random number <math>N</math> of random variables, with conditions on <math>N</math>. {{math theorem | name = Robbins CLT<ref>{{cite journal |last1=Robbins |first1=Herbert |title=The asymptotic distribution of the sum of a random number of random variables |journal=Bull. Amer. Math. Soc. |date=1948 |volume=54 |issue=12 |pages=1151β1161 |doi=10.1090/S0002-9904-1948-09142-X |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-54/issue-12/The-asymptotic-distribution-of-the-sum-of-a-random-number/bams/1183513324.full|doi-access=free }}</ref><ref>{{cite book |last1=Chen |first1=Louis H.Y. |last2=Goldstein |first2=Larry |last3=Shao |first3=Qi-Man |title=Normal Approximation by Stein's Method |date=2011 |publisher=Springer-Verlag |location=Berlin Heidelberg |pages=270β271}}</ref> | math_statement = Let <math>\{X_i, i \geq 1\}</math> be independent, identically distributed random variables with <math>E(X_i) = \mu</math> and <math>\text{Var}(X_i) = \sigma^2</math>, and let <math>\{N_n, n \geq 1\}</math> be a sequence of non-negative integer-valued random variables that are independent of <math>\{X_i, i \geq 1\}</math>. Assume for each <math>n = 1, 2, \dots</math> that <math>E(N_n^2) < \infty</math> and <math display="block"> \frac{N_n - E(N_n)}{\sqrt{\text{Var}(N_n)}} \xrightarrow{\quad d \quad} \mathcal{N}(0,1) </math> where <math>\xrightarrow{\,d\,}</math> denotes convergence in distribution and <math>\mathcal{N}(0,1)</math> is the normal distribution with mean 0, variance 1. Then <math display="block"> \frac{\sum_{i=1}^{N_n} X_i - \mu E(N_n)}{\sqrt{\sigma^2E(N_n) + \mu^2\text{Var}(N_n)}} \xrightarrow{\quad d \quad} \mathcal{N}(0,1) </math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)