Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chain rule
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Composites of more than two functions === The chain rule can be applied to composites of more than two functions. To take the derivative of a composite of more than two functions, notice that the composite of {{mvar|f}}, {{mvar|g}}, and ''{{mvar|h}}'' (in that order) is the composite of {{mvar|f}} with {{math|''g'' β ''h''}}. The chain rule states that to compute the derivative of {{math|''f'' β ''g'' β ''h''}}, it is sufficient to compute the derivative of ''{{mvar|f}}'' and the derivative of {{math|''g'' β ''h''}}. The derivative of {{mvar|f}} can be calculated directly, and the derivative of {{math|''g'' β ''h''}} can be calculated by applying the chain rule again.{{citation needed|date=November 2023}} For concreteness, consider the function <math display="block">y = e^{\sin (x^2)}.</math> This can be decomposed as the composite of three functions: <math display="block">\begin{align} y &= f(u) = e^u, \\ u &= g(v) = \sin v, \\ v &= h(x) = x^2. \end{align}</math> So that <math> y = f(g(h(x))) </math>. Their derivatives are: <math display="block">\begin{align} \frac{dy}{du} &= f'(u) = e^u, \\ \frac{du}{dv} &= g'(v) = \cos v, \\ \frac{dv}{dx} &= h'(x) = 2x. \end{align}</math> The chain rule states that the derivative of their composite at the point {{math|1=''x'' = ''a''}} is: <math display="block">\begin{align} (f \circ g \circ h)'(a) & = f'((g \circ h)(a)) \cdot (g \circ h)'(a) \\ & = f'((g \circ h)(a)) \cdot g'(h(a)) \cdot h'(a) \\ & = (f' \circ g \circ h)(a) \cdot (g' \circ h)(a) \cdot h'(a). \end{align}</math> In [[Leibniz's notation]], this is: <math display="block">\frac{dy}{dx} = \left.\frac{dy}{du}\right|_{u=g(h(a))}\cdot\left.\frac{du}{dv}\right|_{v=h(a)}\cdot\left.\frac{dv}{dx}\right|_{x=a},</math> or for short, <math display="block">\frac{dy}{dx} = \frac{dy}{du}\cdot\frac{du}{dv}\cdot\frac{dv}{dx}.</math> The derivative function is therefore: <math display="block">\frac{dy}{dx} = e^{\sin(x^2)}\cdot\cos(x^2)\cdot 2x.</math> Another way of computing this derivative is to view the composite function {{math|''f'' β ''g'' β ''h''}} as the composite of {{math|''f'' β ''g''}} and ''h''. Applying the chain rule in this manner would yield: <math display="block">\begin{align} (f \circ g \circ h)'(a) &= (f \circ g)'(h(a)) \cdot h'(a) \\ &= f'(g(h(a))) \cdot g'(h(a)) \cdot h'(a). \end{align}</math> This is the same as what was computed above. This should be expected because {{math|1=(''f'' β ''g'') β ''h'' = ''f'' β (''g'' β ''h'')}}. Sometimes, it is necessary to differentiate an arbitrarily long composition of the form <math>f_1 \circ f_2 \circ \cdots \circ f_{n-1} \circ f_n\!</math>. In this case, define <math display="block">f_{a\,.\,.\,b} = f_{a} \circ f_{a+1} \circ \cdots \circ f_{b-1} \circ f_{b}</math> where <math>f_{a\,.\,.\,a} = f_a</math> and <math>f_{a\,.\,.\,b}(x) = x</math> when <math>b < a</math>. Then the chain rule takes the form <math display="block">\begin{align} Df_{1\,.\,.\,n} &= (Df_1 \circ f_{2\,.\,.\,n}) (Df_2 \circ f_{3\,.\,.\,n}) \cdots (Df_{n-1} \circ f_{n\,.\,.\,n}) Df_n \\ &= \prod_{k=1}^n \left[Df_k \circ f_{(k+1)\,.\,.\,n}\right] \end{align}</math> or, in the Lagrange notation, <math display="block">\begin{align} f_{1\,.\,.\,n}'(x) &= f_1' \left( f_{2\,.\,.\,n}(x) \right) \; f_2' \left( f_{3\,.\,.\,n}(x) \right) \cdots f_{n-1}' \left(f_{n\,.\,.\,n}(x)\right) \; f_n'(x) \\[1ex] &= \prod_{k=1}^{n} f_k' \left(f_{(k+1\,.\,.\,n)}(x) \right) \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)