Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Commutative algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Primary decomposition=== {{Main|Primary decomposition}} An ideal ''Q'' of a ring is said to be ''[[Primary ideal|primary]]'' if ''Q'' is [[proper subset|proper]] and whenever ''xy'' ∈ ''Q'', either ''x'' ∈ ''Q'' or ''y<sup>n</sup>'' ∈ ''Q'' for some positive integer ''n''. In '''Z''', the primary ideals are precisely the ideals of the form (''p<sup>e</sup>'') where ''p'' is prime and ''e'' is a positive integer. Thus, a primary decomposition of (''n'') corresponds to representing (''n'') as the intersection of finitely many primary ideals. The ''[[Lasker–Noether theorem]]'', given here, may be seen as a certain generalization of the fundamental theorem of arithmetic: {{math theorem|name=Lasker-Noether Theorem |math_statement=Let ''R'' be a commutative Noetherian ring and let ''I'' be an ideal of ''R''. Then ''I'' may be written as the intersection of finitely many primary ideals with distinct [[Radical of an ideal|radicals]]; that is: : <math>I=\bigcap_{i=1}^t Q_i</math> with ''Q<sub>i</sub>'' primary for all ''i'' and Rad(''Q<sub>i</sub>'') ≠ Rad(''Q<sub>j</sub>'') for ''i'' ≠ ''j''. Furthermore, if: : <math>I=\bigcap_{i=1}^k P_i</math> is decomposition of ''I'' with Rad(''P<sub>i</sub>'') ≠ Rad(''P<sub>j</sub>'') for ''i'' ≠ ''j'', and both decompositions of ''I'' are ''irredundant'' (meaning that no proper subset of either {''Q''<sub>1</sub>, ..., ''Q<sub>t</sub>''} or {''P''<sub>1</sub>, ..., ''P<sub>k</sub>''} yields an intersection equal to ''I''), ''t'' = ''k'' and (after possibly renumbering the ''Q<sub>i</sub>'') Rad(''Q<sub>i</sub>'') = Rad(''P<sub>i</sub>'') for all ''i''.}} For any primary decomposition of ''I'', the set of all radicals, that is, the set {Rad(''Q''<sub>1</sub>), ..., Rad(''Q<sub>t</sub>'')} remains the same by the Lasker–Noether theorem. In fact, it turns out that (for a Noetherian ring) the set is precisely the [[associated prime|assassinator]] of the module ''R''/''I''; that is, the set of all [[annihilator (ring theory)|annihilators]] of ''R''/''I'' (viewed as a module over ''R'') that are prime.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)