Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Composition series
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalization== [[group with operators|Groups with a set of operators]] generalize group actions and ring actions on a group. A unified approach to both groups and modules can be followed as in {{harv|Bourbaki|1974|loc=Ch. 1}} or {{harv|Isaacs|1994|loc=Ch. 10}}, simplifying some of the exposition. The group ''G'' is viewed as being acted upon by elements (operators) from a set Ω. Attention is restricted entirely to subgroups invariant under the action of elements from Ω, called Ω-subgroups. Thus Ω-composition series must use only Ω-subgroups, and Ω-composition factors need only be Ω-simple. The standard results above, such as the Jordan–Hölder theorem, are established with nearly identical proofs. The special cases recovered include when Ω = ''G'' so that ''G'' is acting on itself. An important example of this is when elements of ''G'' act by conjugation, so that the set of operators consists of the [[inner automorphism]]s. A composition series under this action is exactly a [[chief series]]. Module structures are a case of Ω-actions where Ω is a ring and some additional axioms are satisfied.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)