Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Computer numerical control
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples of CNC machines== {| class="wikitable" |- ! CNC machine !! Description !! Image |- | [[Milling (machining)|Mill]] || Translates programs consisting of specific numbers and letters to move the spindle (or workpiece) to various locations and depths. Can either be a Vertical Milling Center (VMC) or a Horizontal Milling Center, depending on the orientation of the spindle. Many use [[G-code]]. Functions include: face milling, shoulder milling, tapping, drilling and some even offer turning. Today, CNC mills can have 3 to 6 axes. Most CNC mills require placing the workpiece on or in them and must be at least as big as the workpiece, but new 3-axis machines are being produced that are much smaller.|| |- | [[Lathe]] || Cuts workpieces while they are rotated. Makes fast, precision cuts, generally using [[Cutting tool (machining)#Cutting tools with inserts (indexable tools)|indexable]] tools and drills. Effective for complicated programs designed to make parts that would be unfeasible to make on manual lathes. Similar control specifications to CNC mills and can often read [[G-code]]. Generally have two axes (X and Z), but newer models have more axes, allowing for more advanced jobs to be machined. Most modern lathes have live tooling, allowing for limited milling operations to take place without having to remove the part from the lathe spindle. Second operations can be completed by using a sub-spindle, which is co-axial to the main spindle, but faces the other direction. This allows the part to be removed from the main spindle, and for additional features to be machined in the back side of the part.|| |- | [[Plasma cutter]] || Involves cutting a material using a [[plasma torch]]. Commonly used to cut steel and other metals, but can be used on a variety of materials. In this process, gas (such as [[compressed air]]) is blown at high speed out of a nozzle; at the same time, an electrical arc is formed through that gas from the nozzle to the surface being cut, turning some of that gas to [[Plasma (physics)|plasma]]. The plasma is sufficiently hot to melt the material being cut and moves sufficiently fast to blow molten metal away from the cut.|| [[File:CNC Plasma Cutting.ogv|thumb|CNC plasma cutting]] |- | [[Electric discharge machining]] || (EDM), also known as spark machining, spark eroding, burning, die sinking, or wire erosion, is a manufacturing process in which the desired shape is obtained using electrical discharges (sparks). Material is removed from the workpiece by a series of rapidly recurring [[Electric current|current]] discharges between two electrodes, separated by a [[dielectric fluid]] and subject to an electric [[voltage]]. One of the electrodes is called the tool electrode, or simply the "tool" or "electrode", while the other is called the workpiece electrode, or "workpiece". EDM can be broadly divided into "sinker" type processes, where the electrode is the positive shape of the resulting feature in the part, and the electric discharge erodes this feature into the part, resulting in the negative shape, and "wire" type processes. Sinker processes are rather slow as compared to conventional machining, averaging on the order of 100mm<sup>3</sup>/min,<ref>{{Cite journal |last1=Klocke |first1=F. |last2=Schwade |first2=M. |last3=Klink |first3=A. |last4=Veselovac |first4=D. |date=2013-01-01 |title=Analysis of Material Removal Rate and Electrode Wear in Sinking EDM Roughing Strategies using Different Graphite Grades |journal=Procedia CIRP |series=Proceedings of the Seventeenth CIRP Conference on Electro Physical and Chemical Machining (ISEM) |volume=6 |pages=163β167 |doi=10.1016/j.procir.2013.03.079 |issn=2212-8271|doi-access=free }}</ref> as compared to 8x10<sup>6</sup> mm<sup>3</sup>/min for conventional machining, but it can generate features that conventional machining cannot. Wire EDM operates by using a thin conductive wire, typically brass, as the electrode, and discharging as it runs past the part being machined. This is useful for complex profiles with inside 90 degree corners that would be challenging to machine with conventional methods. || [[File:EDMWorkpiece.jpg|thumb|Sinker EDM. Electrolyte solution saturates the workpiece, and voltage is applied between the sinker, top, and workpiece, bottom.]] |- | Multi-spindle machine || Type of [[Automatic lathe|screw machine]] used in mass production. Considered to be highly efficient by increasing productivity through automation. Can efficiently cut materials into small pieces while simultaneously utilizing a diversified set of tooling. Multi-spindle machines have multiple spindles on a drum that rotates on a horizontal or vertical axis. The drum contains a drill head which consists of several spindles that are mounted on [[ball bearing]]s and driven by [[gear]]s. There are two types of attachments for these drill heads, fixed or adjustable, depending on whether the center distance of the drilling spindle needs to be varied.<ref>{{Cite news|url=https://www.davenportmachine.com/multi-spindle-machines/|title=Multi Spindle Machines - An In-Depth Overview|work=Davenport Machine|access-date=2017-08-25|language=en-US}}</ref> || |- | [[Water jet cutter]] || Also known as a "waterjet", is a tool capable of slicing into metal or other materials (such as [[granite]]) by using a jet of water at high velocity and pressure, on the order of 60,000 PSI, or a mixture of water and an [[abrasive]] substance, such as garnet powder. It is often used during the fabrication or manufacture of parts for machinery and other devices. Waterjet cutting is the preferred machining method when the materials being cut are sensitive to the high temperatures generated by other methods. It has found applications in a diverse number of industries from mining to aerospace where it is used for operations such as [[cutting]], shaping, [[carving]], and [[reaming]]. The thickness of material processable via waterjet machining is generally limited by the pressure of the waterjet, and by the dispersion of the jet as it gets further from the nozzle. Some waterjet cutters have a 5-axis cutting head, allowing for much more complex shapes to be cut, and to compensate for the angle of the kerf to leave the angled wall on the stock instead of on the finished part. ||[[File:Waterjet cutting machine.jpg|alt=Thibaut Waterjet cutting machine|thumb|[[Water jet cutter|Waterjet]] cutting machine]] |- | [[Punch press]] || Used to rapidly punch holes and cut thin materials. Such as sheet metal, plywood, thin bar stock, and tubing. Punch presses are generally used when a CNC mill would be inefficient or unfeasible. CNC punch presses can come in the C frame, where the sheet material is clamped onto a machining table and a hydraulic ram pushes down on the material, or they can come in a portal frame variant where bar stock/tubing is fed into the machine. |[[File:Punch machine.jpg|thumb|Punch machine at work]] |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)