Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Consistency
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Basic results=== # The following are equivalent: ## <math>\operatorname{Inc}\Phi</math> ## For all <math>\varphi,\; \Phi \vdash \varphi.</math> # Every satisfiable set of formulas is consistent, where a set of formulas <math>\Phi</math> is satisfiable if and only if there exists a model <math>\mathfrak{I}</math> such that <math>\mathfrak{I} \vDash \Phi </math>. # For all <math>\Phi</math> and <math>\varphi</math>: ## if not <math> \Phi \vdash \varphi</math>, then <math>\operatorname{Con}\left( \Phi \cup \{\lnot\varphi\}\right)</math>; ## if <math>\operatorname{Con}\Phi</math> and <math>\Phi \vdash \varphi</math>, then <math> \operatorname{Con} \left(\Phi \cup \{\varphi\}\right)</math>; ## if <math>\operatorname{Con}\Phi</math>, then <math>\operatorname{Con}\left( \Phi \cup \{\varphi\}\right)</math> or <math>\operatorname{Con}\left( \Phi \cup \{\lnot \varphi\}\right)</math>. # Let <math>\Phi</math> be a maximally consistent set of formulas and suppose it contains [[Witness (mathematics)|witnesses]]. For all <math>\varphi</math> and <math> \psi </math>: ## if <math> \Phi \vdash \varphi</math>, then <math>\varphi \in \Phi</math>, ## either <math>\varphi \in \Phi</math> or <math>\lnot \varphi \in \Phi</math>, ## <math>(\varphi \lor \psi) \in \Phi</math> if and only if <math>\varphi \in \Phi</math> or <math>\psi \in \Phi</math>, ## if <math>(\varphi\to\psi) \in \Phi</math> and <math>\varphi \in \Phi </math>, then <math>\psi \in \Phi</math>, ## <math>\exists x \, \varphi \in \Phi</math> if and only if there is a term <math>t</math> such that <math>\varphi{t \over x}\in\Phi</math>.{{citation needed|date=September 2018}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)