Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Contact geometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Examples=== As a prime example, consider '''R'''<sup>3</sup>, endowed with coordinates (''x'',''y'',''z'') and the one-form {{nowrap|1=''dz'' β ''y'' ''dx''.}} The contact plane ''ΞΎ'' at a point (''x'',''y'',''z'') is spanned by the vectors {{nowrap|1=''X''<sub>1</sub> = <big>β</big><sub>''y''</sub>}} and {{nowrap|1=''X''<sub>2</sub> = <big>β</big><sub>''x''</sub> + ''y'' <big>β</big><sub>''z''</sub>.}} <!--- Presumably, a challenge to editors to insert a picture of a contact manifold? (Draw a picture of this!). ---> By replacing the single variables ''x'' and ''y'' with the multivariables ''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>, ''y''<sub>1</sub>, ..., ''y''<sub>''n''</sub>, one can generalize this example to any '''R'''<sup>2''n''+1</sup>. By a [[Darboux theorem|theorem of Darboux]], every contact structure on a manifold looks locally like this particular contact structure on the (2''n'' + 1)-dimensional vector space. The [[Sasakian manifold|Sasakian manifolds]] comprise an important class of contact manifolds. Every [[Connected space|connected]] [[Compact space|compact]] [[Orientability|orientable]] three-dimensional manifold admits a contact structure.<ref>{{Cite journal |last=Martinet |first=J. |date=1971 |editor-last=Wall |editor-first=C. T. C. |title=Formes de Contact sur les VariΓ©tΓ©s de Dimension 3 |url=https://link.springer.com/chapter/10.1007/BFb0068901 |journal=Proceedings of Liverpool Singularities Symposium II |language=fr |location=Berlin, Heidelberg |publisher=Springer |pages=142β163 |doi=10.1007/BFb0068901 |isbn=978-3-540-36868-7|url-access=subscription }}</ref> This result generalises to any compact [[almost-contact manifold]].<ref>{{Cite journal |last=Borman |first=Matthew Strom |last2=Eliashberg |first2=Yakov |last3=Murphy |first3=Emmy |date=2015 |title=Existence and classification of overtwisted contact structures in all dimensions |url=https://projecteuclid.org/journals/acta-mathematica/volume-215/issue-2/Existence-and-classification-of-overtwisted-contact-structures-in-all-dimensions/10.1007/s11511-016-0134-4.full |journal=Acta Mathematica |volume=215 |issue=2 |pages=281β361 |doi=10.1007/s11511-016-0134-4 |issn=0001-5962|arxiv=1404.6157 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)