Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Continuous function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Definition in terms of neighborhoods==== A [[neighborhood (mathematics)|neighborhood]] of a point ''c'' is a set that contains, at least, all points within some fixed distance of ''c''. Intuitively, a function is continuous at a point ''c'' if the range of ''f'' over the neighborhood of ''c'' shrinks to a single point <math>f(c)</math> as the width of the neighborhood around ''c'' shrinks to zero. More precisely, a function ''f'' is continuous at a point ''c'' of its domain if, for any neighborhood <math>N_1(f(c))</math> there is a neighborhood <math>N_2(c)</math> in its domain such that <math>f(x) \in N_1(f(c))</math> whenever <math>x\in N_2(c).</math> As neighborhoods are defined in any [[topological space]], this definition of a continuous function applies not only for real functions but also when the domain and the [[codomain]] are [[topological space]]s and is thus the most general definition. It follows that a function is automatically continuous at every [[isolated point]] of its domain. For example, every real-valued function on the integers is continuous.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)