Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Continuous phase modulation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Theory === If a finitely valued digital signal to be transmitted (the message) is ''m''(''t''), then the corresponding CPFSK signal is :<math>s(t) = A_c \cos\left(2 \pi f_c t + D_f \int_{-\infty}^{t} m(\alpha) d \alpha\right)\,</math> where ''A<sub>c</sub>'' represents the amplitude of the CPFSK signal, ''f<sub>c</sub>'' is the base [[carrier frequency]], and ''D<sub>f</sub>'' is a parameter that controls the [[frequency deviation]] of the modulated signal. The [[integral]] located inside of the [[cosine]]'s argument is what gives the CPFSK signal its continuous phase; an integral over any finitely valued function (which ''m''(''t'') is assumed to be) will not contain any discontinuities. If the message signal is assumed to be [[causal]], then the limits on the integral change to a lower bound of zero and a higher bound of ''t''. Note that this does not mean that ''m''(''t'') must be continuous; in fact, most ideal digital data waveforms contain discontinuities. However, even a discontinuous message signal will generate a proper CPFSK signal.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)