Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convex conjugate
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == The convex conjugate of a [[closed convex function]] is again a closed convex function. The convex conjugate of a [[polyhedral convex function]] (a convex function with [[Polyhedron|polyhedral]] [[Epigraph (mathematics)|epigraph]]) is again a polyhedral convex function. === Order reversing=== Declare that <math>f \le g</math> if and only if <math>f(x) \le g(x)</math> for all <math>x.</math> Then convex-conjugation is [[Order theory|order-reversing]], which by definition means that if <math>f \le g</math> then <math>f^* \ge g^*.</math> For a family of functions <math>\left(f_\alpha\right)_\alpha</math> it follows from the fact that supremums may be interchanged that :<math>\left(\inf_\alpha f_\alpha\right)^*(x^*) = \sup_\alpha f_\alpha^*(x^*),</math> and from the [[max–min inequality]] that :<math>\left(\sup_\alpha f_\alpha\right)^*(x^*) \le \inf_\alpha f_\alpha^*(x^*).</math> === Biconjugate === The convex conjugate of a function is always [[lower semi-continuous]]. The '''biconjugate''' <math>f^{**}</math> (the convex conjugate of the convex conjugate) is also the [[closed convex hull]], i.e. the largest [[lower semi-continuous]] convex function with <math>f^{**} \le f.</math> For [[Proper convex function|proper functions]] <math>f,</math> :<math>f = f^{**}</math> [[if and only if]] <math>f</math> is convex and lower semi-continuous, by the [[Fenchel–Moreau theorem]]. === Fenchel's inequality === For any function {{mvar|f}} and its convex conjugate {{math|''f'' *}}, '''Fenchel's inequality''' (also known as the '''Fenchel–Young inequality''') holds for every <math>x \in X</math> and {{nowrap|<math>p \in X^{*}</math>:}} :<math>\left\langle p,x \right\rangle \le f(x) + f^*(p).</math> Furthermore, the equality holds only when <math>p \in \partial f(x)</math>. The proof follows from the definition of convex conjugate: <math>f^*(p) = \sup_{\tilde x} \left\{ \langle p,\tilde x \rangle - f(\tilde x) \right\} \ge \langle p,x \rangle - f(x).</math> === Convexity === For two functions <math>f_0</math> and <math>f_1</math> and a number <math>0 \le \lambda \le 1</math> the convexity relation :<math>\left((1-\lambda) f_0 + \lambda f_1\right)^{*} \le (1-\lambda) f_0^{*} + \lambda f_1^{*}</math> holds. The <math>{*}</math> operation is a convex mapping itself. === Infimal convolution === The '''infimal convolution''' (or epi-sum) of two functions <math>f</math> and <math>g</math> is defined as :<math>\left( f \operatorname{\Box} g \right)(x) = \inf \left\{ f(x-y) + g(y) \mid y \in \mathbb{R}^n \right\}.</math> Let <math>f_1, \ldots, f_{m}</math> be [[Proper convex function|proper]], convex and [[Semi-continuity|lower semicontinuous]] functions on <math>\mathbb{R}^{n}.</math> Then the infimal convolution is convex and lower semicontinuous (but not necessarily proper),<ref>{{cite book |last=Phelps |first=Robert |authorlink=Robert R. Phelps |title=Convex Functions, Monotone Operators and Differentiability|url=https://archive.org/details/convexfunctionsm00phel |url-access=limited | edition=2 |year=1993|publisher=Springer |isbn= 0-387-56715-1|page= [https://archive.org/details/convexfunctionsm00phel/page/n50 42]}}</ref> and satisfies :<math>\left( f_1 \operatorname{\Box} \cdots \operatorname{\Box} f_m \right)^{*} = f_1^{*} + \cdots + f_m^{*}.</math> The infimal convolution of two functions has a geometric interpretation: The (strict) [[epigraph (mathematics)|epigraph]] of the infimal convolution of two functions is the [[Minkowski sum]] of the (strict) epigraphs of those functions.<ref>{{cite journal |doi=10.1137/070687542 |title=The Proximal Average: Basic Theory |year=2008 |last1=Bauschke |first1=Heinz H. |last2=Goebel |first2=Rafal |last3=Lucet |first3=Yves |last4=Wang |first4=Xianfu |journal=SIAM Journal on Optimization |volume=19 |issue=2 |pages=766|citeseerx=10.1.1.546.4270 }}</ref> === Maximizing argument === If the function <math>f</math> is differentiable, then its derivative is the maximizing argument in the computation of the convex conjugate: :<math>f^\prime(x) = x^*(x):= \arg\sup_{x^{*}} {\langle x, x^{*}\rangle} -f^{*}\left( x^{*} \right)</math> and :<math>f^{{*}\prime}\left( x^{*} \right) = x\left( x^{*} \right):= \arg\sup_x {\langle x, x^{*}\rangle} - f(x);</math> hence :<math>x = \nabla f^{{*}}\left( \nabla f(x) \right),</math> :<math>x^{*} = \nabla f\left( \nabla f^{{*}}\left( x^{*} \right)\right),</math> and moreover :<math>f^{\prime\prime}(x) \cdot f^{{*}\prime\prime}\left( x^{*}(x) \right) = 1,</math> :<math>f^{{*}\prime\prime}\left( x^{*} \right) \cdot f^{\prime\prime}\left( x(x^{*}) \right) = 1.</math> === Scaling properties === If for some <math>\gamma>0,</math> <math>g(x) = \alpha + \beta x + \gamma \cdot f\left( \lambda x + \delta \right)</math>, then :<math>g^{*}\left( x^{*} \right)= - \alpha - \delta\frac{x^{*}-\beta} \lambda + \gamma \cdot f^{*}\left(\frac {x^{*}-\beta}{\lambda \gamma}\right).</math> === Behavior under linear transformations === Let <math>A : X \to Y</math> be a [[bounded linear operator]]. For any convex function <math>f</math> on <math>X,</math> :<math>\left(A f\right)^{*} = f^{*} A^{*}</math> where :<math>(A f)(y) = \inf\{ f(x) : x \in X , A x = y \}</math> is the preimage of <math>f</math> with respect to <math>A</math> and <math>A^{*}</math> is the [[adjoint operator]] of <math>A.</math><ref>Ioffe, A.D. and Tichomirov, V.M. (1979), ''Theorie der Extremalaufgaben''. [[Deutscher Verlag der Wissenschaften]]. Satz 3.4.3</ref> A closed convex function <math>f</math> is symmetric with respect to a given set <math>G</math> of [[orthogonal matrix|orthogonal linear transformation]]s, :<math>f(A x) = f(x)</math> for all <math>x</math> and all <math>A \in G</math> if and only if its convex conjugate <math>f^{*}</math> is symmetric with respect to <math>G.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)