Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convex set
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Intersections and unions === The collection of convex subsets of a vector space, an affine space, or a [[Euclidean space]] has the following properties:<ref name="Soltan" >Soltan, Valeriu, ''Introduction to the Axiomatic Theory of Convexity'', Ştiinţa, [[Chişinău]], 1984 (in Russian). </ref><ref name="Singer" >{{cite book|last=Singer|first=Ivan|title=Abstract convex analysis|series=Canadian Mathematical Society series of monographs and advanced texts|publisher=John Wiley & Sons, Inc.|location=New York|year= 1997|pages=xxii+491|isbn=0-471-16015-6|mr=1461544}}</ref> #The [[empty set]] and the whole space are convex. #The intersection of any collection of convex sets is convex. #The ''[[union (sets)|union]]'' of a collection of convex sets is convex if those sets form a [[Total order#Chains|chain]] (a totally ordered set) under inclusion. For this property, the restriction to chains is important, as the union of two convex sets need not be convex.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)