Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Coxeter group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Finite Coxeter groups== {{Dark mode invert|[[File:Finite coxeter.svg|500px|right|thumb|Coxeter graphs of the irreducible finite Coxeter groups]]}} ===Classification=== Finite Coxeter groups are classified in terms of their [[CoxeterβDynkin diagram|Coxeter diagrams]].<ref name="Coxeter1935"/> The finite Coxeter groups with connected Coxeter diagrams consist of three one-parameter families of increasing dimension (<math>A_n</math> for <math>n \geq 1</math>, <math>B_n</math> for <math>n \geq 2</math>, and <math>D_n</math> for <math>n \geq 4</math>), a one-parameter family of dimension two (<math>I_2(p)</math> for <math>p \geq 5</math>), and six [[exceptional object|exceptional]] groups (<math>E_6, E_7, E_8, F_4, H_3,</math> and <math>H_4</math>). Every finite Coxeter group is the [[direct product]] of finitely many of these irreducible groups.{{efn|In some contexts, the naming scheme may be extended to allow the following alternative or redundant names: <math>B_1 \cong A_1</math>, <math>D_2 \cong I_2(2) \cong A_1 \times A_1</math>, <math>I_2(3) \cong A_2</math>, <math>I_2(4) \cong B_2</math>, <math>H_2 \cong I_2(5)</math>, and <math>D_3 \cong A_3</math>.}} ===Weyl groups=== {{main|Weyl group}} Many, but not all of these, are Weyl groups, and every Weyl group can be realized as a Coxeter group. The Weyl groups are the families <math>A_n, B_n,</math> and <math>D_n,</math> and the exceptions <math>E_6, E_7, E_8, F_4,</math> and <math>I_2(6),</math> denoted in Weyl group notation as <math>G_2.</math> The non-Weyl ones are the exceptions <math>H_3</math> and <math>H_4,</math> and those members of the family <math>I_2(p)</math> that are not [[exceptional isomorphism|exceptionally isomorphic]] to a Weyl group (namely <math>I_2(3) \cong A_2, I_2(4) \cong B_2,</math> and <math>I_2(6) \cong G_2</math>). This can be proven by comparing the restrictions on (undirected) [[Dynkin diagram]]s with the restrictions on Coxeter diagrams of finite groups: formally, the Coxeter graph can be obtained from the Dynkin diagram by discarding the direction of the edges, and replacing every double edge with an edge labelled 4 and every triple edge by an edge labelled 6. Also note that every finitely generated Coxeter group is an [[automatic group]].<ref name="BrinkAndHowlett">{{cite journal|last1=Brink|first1=Brigitte|last2=Howlett|first2=Robert B.|title=A finiteness property and an automatic structure for Coxeter groups|journal=Mathematische Annalen|volume=296|issue=1|pages=179β190|year=1993|doi=10.1007/BF01445101|zbl=0793.20036|s2cid=122177473}}</ref> Dynkin diagrams have the additional restriction that the only permitted edge labels are 2, 3, 4, and 6, which yields the above. Geometrically, this corresponds to the [[crystallographic restriction theorem]], and the fact that excluded polytopes do not fill space or tile the plane β for <math>H_3,</math> the dodecahedron (dually, icosahedron) does not fill space; for <math>H_4,</math> the 120-cell (dually, 600-cell) does not fill space; for <math>I_2(p)</math> a ''p''-gon does not tile the plane except for <math>p=3, 4,</math> or <math>6</math> (the triangular, square, and hexagonal tilings, respectively). Note further that the (directed) Dynkin diagrams ''B<sub>n</sub>'' and ''C<sub>n</sub>'' give rise to the same Weyl group (hence Coxeter group), because they differ as ''directed'' graphs, but agree as ''undirected'' graphs β direction matters for root systems but not for the Weyl group; this corresponds to the [[hypercube]] and [[cross-polytope]] being different regular polytopes but having the same symmetry group. ===Properties=== Some properties of the finite irreducible Coxeter groups are given in the following table. The order of a reducible group can be computed by the product of its irreducible subgroup orders. {{sort-under}} {| class="wikitable sortable sort-under" ! {{verth|Rank ''n''}} || {{verth|Group<br />symbol}} || {{verth|Alternate<br />symbol}} || [[Coxeter notation|Bracket<br />notation]]||Coxeter<br />graph || data-sort-type="number"|Reflections<br />{{math|1=''m'' = {{sfrac|1|2}}''nh''}}<ref>{{cite book|title=Regular Polytopes|last=Coxeter|first=H. S. M.|chapter=12.6. The number of reflections|date=January 1973 |publisher=Courier Corporation |language=en|isbn=0-486-61480-8}}</ref>||data-sort-type="number"|[[Coxeter element|Coxeter number]]<br />''h''||data-sort-type="number"| [[Order (group theory)|Order]] || Group structure<ref name="wilson">{{Citation|last1=Wilson|first1=Robert A.|author-link=Robert Arnott Wilson|title=The finite simple groups|publisher=[[Springer-Verlag]]|location=Berlin, New York|series=[[Graduate Texts in Mathematics]] 251|isbn=978-1-84800-987-5|doi=10.1007/978-1-84800-988-2|year=2009|chapter=Chapter 2|volume=251}}</ref> || Related [[Uniform polytope|polytopes]] |- align=center !1 ||''A''<sub>1</sub> | ''A''<sub>1</sub> || [ ]|| {{CDD|node}} || 1 ||2 || 2 || <math>S_2</math> || { } |- align=center !2 ||''A''<sub>2</sub> | ''A''<sub>2</sub> || [3]|| {{CDD|node|3|node}} || 3 ||3 || 6 || <math>S_3\cong D_6\cong \operatorname{GO}^-_2(2)\cong \operatorname{GO}^+_2(4)</math> || [[equilateral triangle|{3}]] |- align=center !3 ||''A''<sub>3</sub> | ''A''<sub>3</sub> || [3,3]|| {{CDD|node|3|node|3|node}} || 6 ||4 || 24 || <math>S_4</math> || [[regular tetrahedron|{3,3}]] |- align=center !4 ||''A''<sub>4</sub> | ''A''<sub>4</sub> || [3,3,3]|| {{CDD|node|3|node|3|node|3|node}} || 10 ||5 || 120 || <math>S_5</math> || [[5-cell|{3,3,3}]] |- align=center !5 ||''A''<sub>5</sub> | ''A''<sub>5</sub> || [3,3,3,3]|| {{CDD|node|3|node|3|node|3|node|3|node}} || 15 ||6 || 720 || <math>S_6</math> || [[5-simplex|{3,3,3,3}]] |- align=center !''n'' ||''A''<sub>''n''</sub> || ''A''<sub>''n''</sub> || [3<sup>''n''β1</sup>]|| {{CDD|node|3|node|3}}...{{CDD|3|node|3|node}} || ''n''(''n'' + 1)/2 ||''n'' + 1 || (''n'' + 1)! || <math>S_{n+1}</math> || [[simplex|''n''-simplex]] |- align=center !2 ||''B''<sub>2</sub> | ''C''<sub>2</sub> || [4]|| {{CDD|node|4|node}} || 4 ||4 || 8 || <math>C_{2}\wr S_{2} \cong D_8\cong \operatorname{GO}^-_2(3)\cong \operatorname{GO}^+_2(5)</math> || [[square|{4}]] |- align=center !3 ||''B''<sub>3</sub> | ''C''<sub>3</sub> || [4,3]|| {{CDD|node|4|node|3|node}}|| 9 ||6 || 48 || <math>C_{2}\wr S_{3}\cong S_4\times 2</math> || [[cube|{4,3}]] / [[regular octahedron|{3,4}]] |- align=center !4 ||''B''<sub>4</sub> | ''C''<sub>4</sub> || [4,3,3]|| {{CDD|node|4|node|3|node|3|node}}|| 16 ||8 || 384 || <math>C_{2}\wr S_{4}</math> || [[tesseract|{4,3,3}]] / [[16-cell|{3,3,4}]] |- align=center !5 ||''B''<sub>5</sub> | ''C''<sub>5</sub> || [4,3,3,3]|| {{CDD|node|4|node|3|node|3|node|3|node}} || 25 || 10 || 3840 || <math>C_{2}\wr S_{5}</math> || [[5-cube|{4,3,3,3}]] / [[5-orthoplex|{3,3,3,4}]] |- align=center !''n'' ||''B''<sub>''n''</sub>|| ''C''<sub>''n''</sub> || [4,3<sup>''n''β2</sup>]|| {{CDD|node|4|node|3}}...{{CDD|3|node|3|node}}|| ''n''<sup>2</sup> ||2''n'' || 2<sup>''n''</sup> ''n''! || <math>C_{2}\wr S_{n}</math> || ''n''-cube / [[orthoplex|''n''-orthoplex]] |- align=center !4 ||''D''<sub>4</sub> | ''B''<sub>4</sub> || [3<sup>1,1,1</sup>]|| {{CDD|nodes|split2|node|3|node}}|| 12 ||6 || 192 || <math>C_{2}^3 S_{4}\cong 2^{1+4}\colon S_3</math> || [[16-cell|h{4,3,3}]] / [[16-cell|{3,3<sup>1,1</sup>}]] |- align=center !5 ||''D''<sub>5</sub> | ''B''<sub>5</sub> || [3<sup>2,1,1</sup>]|| {{CDD|nodes|split2|node|3|node|3|node}} || 20 ||8 || 1920 || <math>C_{2}^4 S_{5}</math>|| [[5-demicube|h{4,3,3,3}]] / [[5-orthoplex|{3,3,3<sup>1,1</sup>}]] |- align=center !''n'' ||''D''<sub>''n''</sub> || ''B''<sub>''n''</sub> || [3<sup>''n''β3,1,1</sup>]|| {{CDD|nodes|split2|node|3}}...{{CDD|3|node|3|node}}|| ''n''(''n'' β 1) ||2(''n'' β 1) || 2<sup>''n''−1</sup> ''n''! || <math>C_{2}^{n-1} S_{n}</math> || [[demihypercube|''n''-demicube]] / ''n''-orthoplex |- align=center !6 ||[[E6 (mathematics)|''E''<sub>6</sub>]] |''E''<sub>6</sub> || [3<sup>2,2,1</sup>]|| {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}} || 36 ||12 || 51840 | <math>\operatorname{GO}_6^{-}(2) \cong \operatorname{SO}_5(3) \cong \operatorname{PSp}_4(3) \colon 2 \cong \operatorname{PSU}_4(2) \colon 2</math> | [[2 21 polytope|2<sub>21</sub>]], [[1 22 polytope|1<sub>22</sub>]] |- align=center !7 ||[[E7 (mathematics)|''E''<sub>7</sub>]] |''E''<sub>7</sub> || [3<sup>3,2,1</sup>]|| {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}|| 63 ||18 || 2903040 || <math> \operatorname{GO}_7(2)\times 2 \cong \operatorname{Sp}_6(2)\times 2 </math>|| [[3 21 polytope|3<sub>21</sub>]], [[2 31 polytope|2<sub>31</sub>]], [[1 32 polytope|1<sub>32</sub>]] |- align=center !8 ||[[E8 (mathematics)|''E''<sub>8</sub>]] | ''E''<sub>8</sub> || [3<sup>4,2,1</sup>]|| {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}|| 120 ||30 || 696729600 || <math>2\cdot\operatorname{GO}_8^{+}(2)</math>||[[4 21 polytope|4<sub>21</sub>]], [[2 41 polytope|2<sub>41</sub>]], [[1 42 polytope|1<sub>42</sub>]] |- align=center !4 ||[[F4 (mathematics)|''F''<sub>4</sub>]] |''F''<sub>4</sub> || [3,4,3]|| {{CDD|node|3|node|4|node|3|node}} || 24 ||12 || 1152 ||<math>\operatorname{GO}^+_4(3)\cong 2^{1+4}\colon(S_3 \times S_3)</math>|| [[24-cell|{3,4,3}]] |- align=center !2 ||[[G2 (mathematics)|''G''<sub>2</sub>]] || β (''D''{{supsub|6|2}}) || [6]|| {{CDD|node|6|node}} || 6 ||6 || 12 || <math>D_{12}\cong \operatorname{GO}^-_2(5)\cong \operatorname{GO}^+_2(7)</math>|| [[hexagon|{6}]] |- align=center !2 ||''I''<sub>2</sub>(5) || ''G''<sub>2</sub> || [5]||{{CDD|node|5|node}} || 5 || 5 || 10 || <math>D_{10}\cong \operatorname{GO}^-_2(4)</math>|| [[pentagon|{5}]] |- align=center !3 ||''H''<sub>3</sub> | ''G''<sub>3</sub> || [3,5]|| {{CDD|node|5|node|3|node}} || 15 ||10 || 120 || <math>2\times A_5</math>|| [[icosahedron|{3,5}]] / [[dodecahedron|{5,3}]] |- align=center !4 ||''H''<sub>4</sub> | ''G''<sub>4</sub> || [3,3,5]|| {{CDD|node|5|node|3|node|3|node}} || 60 ||30 || 14400 || <math>2\cdot(A_5\times A_5)\colon 2</math>{{efn|an index 2 subgroup of <math>\operatorname{GO}^+_4(5)</math>}}|| [[120-cell|{5,3,3}]] / [[600-cell|{3,3,5}]] |- align=center !2 ||''I''<sub>2</sub>(''n'') || ''D''{{supsub|''n''|2}}|| [''n'']|| {{CDD|node|n|node}} || ''n'' ||''n'' || 2''n'' | <math>D_{2n}</math> <math>\cong \operatorname{GO}^-_2(n-1)</math> when ''n'' = ''p''<sup>''k''</sup> + 1, ''p'' prime <math>\cong \operatorname{GO}^+_2(n+1)</math> when ''n'' = ''p''<sup>''k''</sup> β 1, ''p'' prime | [[regular polygon|{''p''}]] |} ===Symmetry groups of regular polytopes=== The symmetry group of every regular polytope is a finite Coxeter group. Note that [[dual polytope]]s have the same symmetry group. There are three series of regular polytopes in all dimensions. The symmetry group of a regular ''n''-simplex is the symmetric group ''S''<sub>''n''+1</sub>, also known as the Coxeter group of type ''A<sub>n</sub>''. The symmetry group of the ''n''-[[cube]] and its dual, the ''n''-cross-polytope, is ''B<sub>n</sub>'', and is known as the [[hyperoctahedral group]]. The exceptional regular polytopes in dimensions two, three, and four, correspond to other Coxeter groups. In two dimensions, the [[dihedral group]]s, which are the symmetry groups of [[regular polygon]]s, form the series ''I''<sub>2</sub>(''p''), for ''p'' β₯ 3. In three dimensions, the symmetry group of the regular [[dodecahedron]] and its dual, the regular [[icosahedron]], is ''H''<sub>3</sub>, known as the [[full icosahedral group]]. In four dimensions, there are three exceptional regular polytopes, the [[24-cell]], the [[120-cell]], and the [[600-cell]]. The first has symmetry group ''F''<sub>4</sub>, while the other two are dual and have symmetry group ''H''<sub>4</sub>. The Coxeter groups of type ''D''<sub>''n''</sub>, ''E''<sub>6</sub>, ''E''<sub>7</sub>, and ''E''<sub>8</sub> are the symmetry groups of certain [[semiregular polytope]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)