Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Crystal oscillator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Electrical model=== A quartz crystal can be modeled as an electrical network with low-[[Electrical impedance|impedance]] (series) and high-[[Electrical impedance|impedance]] (parallel) resonance points spaced closely together. Mathematically, using the [[Laplace transform]], the impedance of this network can be written as: [[File:Crystal oscillator.svg|thumb|220px|right|Schematic symbol and equivalent circuit for a quartz crystal in an oscillator]] : <math>Z(s) = \left( {\frac{1}{s\cdot C_1}+s\cdot L_1+R_1} \right) \left\| \left( {\frac{1}{s\cdot C_0}} \right) \right. ,</math> or : <math>\begin{align} Z(s) &= \frac{s^2 + s\frac{R_1}{L_1} + {\omega_\mathrm{s}}^2}{\left(s \cdot C_0\right)\left[s^2 + s\frac{R_1}{L_1} + {\omega_\mathrm{p}}^2\right]} \\[2pt] \Rightarrow \omega_\mathrm{s} &= \frac{1}{\sqrt{L_1 \cdot C_1}}, \quad \omega_\mathrm{p} = \sqrt{\frac{C_1 + C_0}{L_1 \cdot C_1 \cdot C_0}} = \omega_\mathrm{s} \sqrt{1 + \frac{C_1}{C_0}} \approx \omega_\mathrm{s} \left(1 + \frac{C_1}{2 C_0}\right) \quad \left(C_0 \gg C_1\right) \end{align}</math> where <math>s</math> is the complex frequency (<math>s=j\omega</math>), <math>\omega_\mathrm{s}</math> is the series resonant [[angular frequency]], and <math>\omega_\mathrm{p}</math> is the parallel resonant angular frequency. {{anchor|Load capacitance|Load capacitor|Padding capacitor}}Adding [[capacitance]] across a crystal causes the (parallel) resonant frequency to decrease. Adding [[inductance]] across a crystal causes the (parallel) resonant frequency to increase. These effects can be used to adjust the frequency at which a crystal oscillates. Crystal manufacturers normally cut and trim their crystals to have a specified resonant frequency with a known "load" capacitance added to the crystal. For example, a crystal intended for a 6 pF load has its specified parallel resonant frequency when a 6.0 pF capacitor is placed across it. Without the load capacitance, the resonant frequency is higher.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)