Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Crystallographic point group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Isomorphisms == {{See also|Crystal structure#Crystal systems}} Many of the crystallographic point groups share the same internal structure. For example, the point groups {{overline|1}}, 2, and m contain different geometric symmetry operations, (inversion, rotation, and reflection, respectively) but all share the structure of the [[cyclic group]] C<sub>2</sub>. All [[Group isomorphism|isomorphic]] groups are of the same [[Order (group theory)|order]], but not all groups of the same order are isomorphic. The point groups which are isomorphic are shown in the following table:<ref>{{cite journal | last=Novak | first=I | title=Molecular isomorphism | journal=European Journal of Physics | publisher=IOP Publishing | volume=16 | issue=4 | date=1995-07-18 | issn=0143-0807 | doi=10.1088/0143-0807/16/4/001 | pages=151–153| bibcode=1995EJPh...16..151N | s2cid=250887121 }}</ref> {| class="wikitable" |- ![[Hermann–Mauguin notation|Hermann–Mauguin]] ![[Schoenflies notation|Schoenflies]] ![[Order (group theory)|Order]] !colspan=2|[[List of small groups|Abstract group]] |- align=center || 1 || ''C<sub>1</sub>'' || 1 || [[Trivial group|C<sub>1</sub>]] ||<math>G_1^1</math> |- align=center | {{overline|1}} ||''C<sub>i</sub> = S<sub>2</sub>'' ||2 || rowspan="3"| [[Cyclic group|C<sub>2</sub>]] ||rowspan=3|<math>G_2^1</math> |- align=center || 2 ||''C<sub>2</sub>'' || 2 |- align=center | m ||''C<sub>s</sub> = C<sub>1h</sub>'' || 2 |- align=center || 3 || ''C<sub>3</sub>'' || 3 || [[Cyclic group|C<sub>3</sub>]] ||<math>G_3^1</math> |- align=center || 4 || ''C<sub>4</sub>'' || 4 ||rowspan="2"| [[Cyclic group|C<sub>4</sub>]] ||rowspan=2|<math>G_4^1</math> |- align=center | {{overline|4}} || ''S<sub>4</sub>'' || 4 |- align=center | 2/m || ''C<sub>2h</sub>'' || 4 || rowspan="3" | [[Klein four-group|D<sub>2</sub>]] = C<sub>2</sub> × C<sub>2</sub> ||rowspan=3|<math>G_4^2</math> |- align=center || 222 ||''D<sub>2</sub> = V'' || 4 |- align=center | mm2 ||''C<sub>2v</sub>'' || 4 |- align=center |{{overline|3}} ||''C<sub>3i</sub> = S<sub>6</sub>'' || 6 ||rowspan="3"|[[Cyclic group|C<sub>6</sub>]]||rowspan=3|<math>G_6^1</math> |- align=center ||6 || ''C<sub>6</sub>'' || 6 |- align=center | {{overline|6}} || ''C<sub>3h</sub>'' || 6 |- align=center | 32 || ''D<sub>3</sub>'' || 6 || rowspan="2"| [[Dihedral group of order 6|D<sub>3</sub>]]||rowspan=2|<math>G_6^2</math> |- align=center | 3m || ''C<sub>3v</sub>'' || 6 |- align=center | mmm ||''D<sub>2h</sub>'' = ''V<sub>h</sub>'' || 8 || D<sub>2</sub> × C<sub>2</sub>||<math>G_8^3</math> |- align=center | 4/m || ''C<sub>4h</sub>'' || 8 || C<sub>4</sub> × C<sub>2</sub>||<math>G_8^2</math> |- align=center |422 || ''D<sub>4</sub>'' || 8 || rowspan="3"| [[Dihedral group of order 8|D<sub>4</sub>]]||rowspan=3|<math>G_8^4</math> |- align=center | 4mm || ''C<sub>4v</sub>'' || 8 |- align=center | {{overline|4}}2m || ''D<sub>2d</sub>'' = ''V<sub>d</sub>''|| 8 |- align=center | 6/m || ''C<sub>6h</sub>'' || 12 || C<sub>6</sub> × C<sub>2</sub>||<math>G_{12}^2</math> |- align=center || 23 || ''T'' || 12 || [[Alternating group|A<sub>4</sub>]]||<math>G_{12}^5</math> |- align=center | {{overline|3}}m || ''D<sub>3d</sub>'' || 12 || rowspan="4" | [[Dihedral group|D<sub>6</sub>]]||rowspan=4|<math>G_{12}^3</math> |- align=center | 622 || ''D<sub>6</sub>'' || 12 |- align=center | 6mm || ''C<sub>6v</sub>'' || 12 |- align=center | {{overline|6}}m2 || ''D<sub>3h</sub>'' || 12 |- align=center | 4/mmm || ''D<sub>4h</sub>'' || 16 || D<sub>4</sub> × C<sub>2</sub>||<math>G_{16}^9</math> |- align=center | 6/mmm || ''D<sub>6h</sub>'' || 24 || D<sub>6</sub> × C<sub>2</sub>||<math>G_{24}^5</math> |- align=center | m{{overline|3}} || ''T<sub>h</sub>'' || 24 || A<sub>4</sub> × C<sub>2</sub>||<math>G_{24}^{10}</math> |- align=center | 432 || ''O'' || 24 || rowspan="2"| [[Symmetric group|S<sub>4</sub>]]||rowspan=2|<math>G_{24}^{7}</math> |- align=center | {{overline|4}}3m || ''T<sub>d</sub>'' || 24 |- align=center | m{{overline|3}}m || ''O<sub>h</sub>'' || 48 || S<sub>4</sub> × C<sub>2</sub>||<math>G_{48}^7</math> |} This table makes use of [[cyclic group]]s (C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>, C<sub>4</sub>, C<sub>6</sub>), [[dihedral group]]s (D<sub>2</sub>, D<sub>3</sub>, D<sub>4</sub>, D<sub>6</sub>), one of the [[alternating group]]s (A<sub>4</sub>), and one of the [[symmetric group]]s (S<sub>4</sub>). Here the symbol " × " indicates a [[Direct product of groups|direct product]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)