Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
D'Hondt method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Approximate proportionality under D'Hondt== The D'Hondt method approximates proportionality by minimizing the largest [[seats-to-votes ratio]] among all parties.<ref name="Sainte1910">{{cite journal |author=André Sainte-Laguë |title=La représentation Proportionnelle et la méthode des moindres carrés |url=http://www.numdam.org/article/ASENS_1910_3_27__529_0.pdf |journal=Annales Scientifiques de l'École Normale Supérieure |publisher=l'École Normale Supérieure |volume=27 |year=1910}}</ref> This ratio is also known as the advantage ratio. In contrast, the average seats-to-votes ratio is optimized by the [[Webster/Sainte-Laguë method]]. For party <math>p \in \{1,\dots,P\}</math>, where <math>P</math> is the overall number of parties, the advantage ratio is <math display="block">a_p=\frac{s_p}{v_p},</math> where *<math>s_p</math> – the seat share of party <math>p</math>, <math>s_p \in [0,1],\;\sum_p s_p = 1</math>, *<math>v_p</math> – the vote share of party <math>p</math>, <math>v_p \in [0,1],\;\sum_p v_p = 1</math>. The largest advantage ratio, <math display="block">\delta = \max_p a_p,</math> captures how over-represented is the most over-represented party. The D'Hondt method assigns seats so that this ratio attains its smallest possible value, <math display="block">\delta^* = \min_{\mathbf{s} \in \mathcal{S}} \max_p a_p,</math> where <math>\mathbf{s}=\{s_1,\dots,s_P\}</math> is a seat allocation from the set of all allowed seat allocations <math>\mathcal{S}</math>. Thanks to this, as shown by Juraj Medzihorsky,<ref name="Medzihorsky2019" /> the D'Hondt method splits the votes into exactly proportionally represented ones and residual ones. The overall fraction of residual votes is <math display="block">\pi^* = 1 - \frac{1}{\delta^*}.</math> The residuals of party {{mvar|p}} are <math display="block">r_p = v_p - (1-\pi^*) s_p,\; r_p \in [0, v_p], \sum_p\,r_p=\pi^*.</math> For illustration, continue with the above example of four parties. The advantage ratios of the four parties are 1.2 for A, 1.1 for B, 1 for C, and 0 for D. The reciprocal of the largest advantage ratio is {{math|1=1/1.15 = 0.87 = 1 − π{{sup|*}}}}. The residuals as shares of the total vote are 0% for A, 2.2% for B, 2.2% for C, and 8.7% for party D. Their sum is 13%, i.e., {{math|1=1 − 0.87 = 0.13}}. The decomposition of the votes into represented and residual ones is shown in the table below. {|class="wikitable" |+ Allocation of eight seats under the D'Hondt method ! Party ! Vote<br />share ! Seat<br />share ! Advantage<br />ratio ! Residual<br />votes ! Represented<br />votes |- style="text-align: left;" || A || align="right" | 43.5% || align="right" | 50.0% || style="text-align: center" | 1.15 || style="text-align: right" | 0.0% || style="text-align: right" | 43.5% |- || B || style="text-align: right" | 34.8% || style="text-align: right" | 37.5% || style="text-align: center" | 1.08 || style="text-align: right" | 2.2% || style="text-align: right" | 32.6% |- || C || style="text-align: right" | 13.0% || style="text-align: right" | 12.5% || style="text-align: center" | 0.96 || style="text-align: right" | 2.2% || style="text-align: right" | 10.9% |- || D || style="text-align: right" | 8.7% || style="text-align: right" | 0.0% || style="text-align: center" | 0.00 || style="text-align: right" | 8.7% || style="text-align: right" | 0.0% |- ! Total || 100% || 100% || — || style="text-align: right" | 13% || style="text-align: right" | 87% |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)