Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Darboux integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== ===A Darboux-integrable function=== Suppose we want to show that the function <math>f(x)=x</math> is Darboux-integrable on the interval <math>[0,1]</math> and determine its value. To do this we partition <math>[0,1]</math> into <math>n</math> equally sized subintervals each of length <math>1/n</math>. We denote a partition of <math>n</math> equally sized subintervals as <math>P_n</math>. Now since <math>f(x)=x</math> is strictly increasing on <math>[0,1]</math>, the infimum on any particular subinterval is given by its starting point. Likewise the supremum on any particular subinterval is given by its end point. The starting point of the <math>k</math>-th subinterval in <math>P_n</math> is <math>(k-1)/n</math> and the end point is <math>k/n</math>. Thus the lower Darboux sum on a partition <math>P_n</math> is given by :<math>\begin{align} L_{f,P_n} &= \sum_{k = 1}^{n} f(x_{k-1})(x_{k} - x_{k-1}) \\ &= \sum_{k = 1}^{n} \frac{k-1}{n} \cdot \frac{1}{n} \\ &= \frac{1}{n^2} \sum_{k = 1}^{n} [k-1] \\ &= \frac{1}{n^2}\left[ \frac{(n-1)n}{2} \right] \\ &= \frac{1}{2} - \frac{1}{2n} \end{align}</math> similarly, the upper Darboux sum is given by :<math>\begin{align} U_{f,P_n} &= \sum_{k = 1}^{n} f(x_{k})(x_{k} - x_{k-1}) \\ &= \sum_{k = 1}^{n} \frac{k}{n} \cdot \frac{1}{n} \\ &= \frac{1}{n^2} \sum_{k = 1}^{n} k \\ &= \frac{1}{n^2}\left[ \frac{(n+1)n}{2} \right] \\ &= \frac{1}{2} + \frac{1}{2n} \end{align}</math> Since :<math>U_{f,P_n} - L_{f,P_n} = \frac{1}{n}</math> Thus for given any <math>\varepsilon>0</math>, we have that any partition <math>P_n</math> with <math>n > \frac{1}{\varepsilon}</math> satisfies :<math>U_{f,P_n} - L_{f,P_n} < \varepsilon</math> which shows that <math>f</math> is Darboux integrable. To find the value of the integral note that :<math>\int_{0}^{1}f(x) \, dx = \lim_{n \to \infty} U_{f,P_n} = \lim_{n \to \infty} L_{f,P_n} = \frac{1}{2}</math> {{multiple image <!-- Essential parameters --> | align = center | direction = horizontal | caption_align = center | width = 300 <!-- Extra parameters --> | header = Darboux sums | header_align = center | header_background = | footer = | footer_align = | footer_background = | background color = |image1=Riemann Integration and Darboux Upper Sums.gif |width1=300 |caption1=Darboux upper sums of the function {{math|1=''y'' = ''x''<sup>2</sup>}} |alt1=Upper Darboux sum example |image2=Riemann Integration and Darboux Lower Sums.gif |width2=300 |caption2=Darboux lower sums of the function {{math|1=''y'' = ''x''<sup>2</sup>}} |alt2=Lower Darboux sum example }} ===A nonintegrable function=== Suppose we have the [[Dirichlet function]] <math>f:\R \to [0,1]</math> defined as :<math>\begin{align} f(x) &= \begin{cases} 1 & \text{if }x\text{ is rational} \\ 0 & \text{if }x\text{ is irrational} \end{cases} \end{align}</math> Since the rational and irrational numbers are both [[dense subset]]s of <math>\mathbb{R}</math>, it follows that <math>f</math> takes on the value of 0 and 1 on every subinterval of any partition. Thus for any partition <math>P</math> we have :<math>\begin{align} L_{f,P} &=\sum_{k = 1}^{n}(x_{k} - x_{k-1})\inf_{x \in [x_{k-1},x_{k}]}f = 0 \\ U_{f,P} &=\sum_{k = 1}^{n}(x_{k} - x_{k-1}) \sup_{x \in [x_{k-1},x_{k}]}f = 1 \end{align}</math> from which we can see that the lower and upper Darboux integrals are unequal.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)