Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Del
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Curl=== The [[Curl (mathematics)|curl]] of a vector field <math>\mathbf v(x, y, z) = v_x\hat\mathbf x + v_y\hat\mathbf y + v_z\hat\mathbf z</math> is a [[vector field|vector]] function that can be represented as: :<math>\operatorname{curl}\mathbf v = \left({\partial v_z \over \partial y} - {\partial v_y \over \partial z} \right) \hat\mathbf x + \left({\partial v_x \over \partial z} - {\partial v_z \over \partial x} \right) \hat\mathbf y + \left({\partial v_y \over \partial x} - {\partial v_x \over \partial y} \right) \hat\mathbf z = \nabla \times \mathbf v</math> The curl at a point is proportional to the on-axis torque that a tiny pinwheel would be subjected to if it were centered at that point. The vector product operation can be visualized as a pseudo-[[determinant]]: :<math>\nabla \times \mathbf v = \left|\begin{matrix} \hat\mathbf x & \hat\mathbf y & \hat\mathbf z \\[2pt] {\frac{\partial}{\partial x}} & {\frac{\partial}{\partial y}} & {\frac{\partial}{\partial z}} \\[2pt] v_x & v_y & v_z \end{matrix}\right|</math> Again the power of the notation is shown by the product rule: :<math>\nabla \times (f \mathbf v) = (\nabla f) \times \mathbf v + f (\nabla \times \mathbf v)</math> The rule for the vector product does not turn out to be simple: :<math>\nabla \times (\mathbf u \times \mathbf v) = \mathbf u \, (\nabla \cdot \mathbf v) - \mathbf v \, (\nabla \cdot \mathbf u) + (\mathbf v \cdot \nabla) \, \mathbf u - (\mathbf u \cdot \nabla) \, \mathbf v</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)