Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Density matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Measurement == Let <math>A</math> be an [[observable]] of the system, and suppose the ensemble is in a mixed state such that each of the pure states <math>\textstyle |\psi_j\rangle</math> occurs with probability <math>p_j</math>. Then the corresponding density operator equals : <math>\rho = \sum_j p_j |\psi_j \rangle \langle \psi_j|.</math> The [[Expectation value (quantum mechanics)|expectation value]] of the [[Measurement in quantum mechanics|measurement]] can be calculated by extending from the case of pure states: : <math> \langle A \rangle = \sum_j p_j \langle \psi_j|A|\psi_j \rangle = \sum_j p_j \operatorname{tr}\left(|\psi_j \rangle \langle \psi_j|A \right) = \operatorname{tr}\left(\sum_j p_j |\psi_j \rangle \langle \psi_j|A\right) = \operatorname{tr}(\rho A),</math> where <math>\operatorname{tr}</math> denotes [[trace (linear algebra)|trace]]. Thus, the familiar expression <math>\langle A\rangle=\langle\psi|A|\psi\rangle</math> for pure states is replaced by : <math> \langle A \rangle = \operatorname{tr}( \rho A)</math> for mixed states.<ref name=":0" />{{Rp|73}} Moreover, if <math>A</math> has spectral resolution : <math>A = \sum _i a_i P_i,</math> where <math>P_i</math> is the [[projection operator]] into the [[eigenspace]] corresponding to eigenvalue <math>a_i</math>, the post-measurement density operator is given by<ref>{{cite journal|last=Lüders|first=Gerhart|author-link=Gerhart Lüders|year=1950|title=Über die Zustandsänderung durch den Messprozeß|journal=[[Annalen der Physik]]|volume=443|issue=5–8 |page=322|doi=10.1002/andp.19504430510|bibcode=1950AnP...443..322L }} Translated by K. A. Kirkpatrick as {{Cite journal|last=Lüders|first=Gerhart|author-link=Gerhart Lüders|date=2006-04-03|title=Concerning the state-change due to the measurement process|journal=[[Annalen der Physik]]|volume=15|issue=9|pages=663–670|arxiv=quant-ph/0403007|bibcode=2006AnP...518..663L|doi=10.1002/andp.200610207|s2cid=119103479}}</ref><ref>{{Citation|last1=Busch|first1=Paul|title=Lüders Rule|date=2009|work=Compendium of Quantum Physics|pages=356–358|editor-last=Greenberger|editor-first=Daniel|publisher=Springer Berlin Heidelberg|language=en|doi=10.1007/978-3-540-70626-7_110|isbn=978-3-540-70622-9|last2=Lahti|first2=Pekka|author-link=Paul Busch (physicist)|editor2-last=Hentschel|editor2-first=Klaus|editor3-last=Weinert|editor3-first=Friedel}}</ref> : <math>\rho_i' = \frac{P_i \rho P_i}{\operatorname{tr}\left[\rho P_i\right]}</math> when outcome ''i'' is obtained. In the case where the measurement result is not known the ensemble is instead described by : <math>\; \rho ' = \sum_i P_i \rho P_i.</math> If one assumes that the probabilities of measurement outcomes are linear functions of the projectors <math>P_i</math>, then they must be given by the trace of the projector with a density operator. [[Gleason's theorem]] shows that in Hilbert spaces of dimension 3 or larger the assumption of linearity can be replaced with an assumption of [[quantum contextuality|non-contextuality]].<ref>{{cite journal|first=Andrew M.|author-link=Andrew M. Gleason|year = 1957|title = Measures on the closed subspaces of a Hilbert space|url = http://www.iumj.indiana.edu/IUMJ/FULLTEXT/1957/6/56050|journal = [[Indiana University Mathematics Journal]]|volume = 6|issue=4|pages = 885–893|doi=10.1512/iumj.1957.6.56050|mr=0096113|last = Gleason|doi-access = free}}</ref> This restriction on the dimension can be removed by assuming non-contextuality for [[POVM]]s as well,<ref>{{Cite journal|last=Busch|first=Paul|author-link=Paul Busch (physicist) |date=2003|title=Quantum States and Generalized Observables: A Simple Proof of Gleason's Theorem|journal=[[Physical Review Letters]]|volume=91|issue=12|pages=120403|arxiv=quant-ph/9909073|doi=10.1103/PhysRevLett.91.120403|pmid=14525351|bibcode=2003PhRvL..91l0403B|s2cid=2168715}}</ref><ref>{{Cite journal|last1=Caves|first1=Carlton M.|author-link=Carlton M. Caves|last2=Fuchs|first2=Christopher A.|last3=Manne|first3=Kiran K.|last4=Renes|first4=Joseph M.|date=2004|title=Gleason-Type Derivations of the Quantum Probability Rule for Generalized Measurements|journal=[[Foundations of Physics]]|volume=34|issue=2|pages=193–209|arxiv=quant-ph/0306179|doi=10.1023/B:FOOP.0000019581.00318.a5|bibcode=2004FoPh...34..193C|s2cid=18132256}}</ref> but this has been criticized as physically unmotivated.<ref>{{cite journal |author1=Andrzej Grudka |author2=Paweł Kurzyński |title=Is There Contextuality for a Single Qubit? |journal=Physical Review Letters |date=2008 |volume=100 |issue=16 |page=160401 |doi=10.1103/PhysRevLett.100.160401|pmid=18518167 |arxiv=0705.0181|bibcode=2008PhRvL.100p0401G |s2cid=13251108 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)