Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Directed acyclic graph
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Combinatorial enumeration === The [[graph enumeration]] problem of counting directed acyclic graphs was studied by {{harvtxt|Robinson|1973}}.<ref name="enum">{{citation|first=R. W.|last=Robinson|contribution=Counting labeled acyclic digraphs|pages=239–273|editor-first=F.|editor-last=Harary|editor-link=Frank Harary|title=New Directions in the Theory of Graphs|publisher=Academic Press|year=1973}}. See also {{citation |last1 = Harary | first1 = Frank | author1-link = Frank Harary | first2 = Edgar M. | last2 = Palmer | year = 1973| title = Graphical Enumeration | publisher = [[Academic Press]] | isbn = 978-0-12-324245-7 | page=19}}.</ref> The number of DAGs on {{mvar|n}} labeled vertices, for {{math|1=''n'' = 0, 1, 2, 3, …}} (without restrictions on the order in which these numbers appear in a topological ordering of the DAG) is :1, 1, 3, 25, 543, 29281, 3781503, … {{OEIS|id=A003024}}. These numbers may be computed by the [[recurrence relation]] :<math>a_n = \sum_{k=1}^n (-1)^{k-1} {n\choose k}2^{k(n-k)} a_{n-k}.</math><ref name="enum" /> [[Eric W. Weisstein]] conjectured,<ref>{{MathWorld | urlname=WeissteinsConjecture | title=Weisstein's Conjecture|mode=cs2}}</ref> and {{harvtxt|McKay|Royle|Wanless|Oggier|2004}} proved, that the same numbers count the [[Logical matrix|(0,1) matrices]] for which all [[eigenvalue]]s are positive [[real number]]s. The proof is [[bijective proof|bijective]]: a matrix {{mvar|A}} is an [[adjacency matrix]] of a DAG if and only if {{math|''A'' + ''I''}} is a (0,1) matrix with all eigenvalues positive, where {{mvar|I}} denotes the [[identity matrix]]. Because a DAG cannot have [[Loop (graph theory)|self-loops]], its adjacency matrix must have a zero diagonal, so adding {{mvar|I}} preserves the property that all matrix coefficients are 0 or 1.<ref>{{citation|last1=McKay|first1=B. D.|author1-link=Brendan McKay (mathematician)|last2=Royle|first2=G. F.|author2-link=Gordon Royle|last3=Wanless|first3=I. M.|last4=Oggier|first4=F. E.|author4-link= Frédérique Oggier |last5=Sloane|first5=N. J. A.|author5-link= Neil Sloane|last6=Wilf|first6=H.|author6-link=Herbert Wilf|title=Acyclic digraphs and eigenvalues of (0,1)-matrices|journal=[[Journal of Integer Sequences]]|volume=7|year=2004|page=33|arxiv=math/0310423|bibcode=2004JIntS...7...33M|url=http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Sloane/sloane15.html}}, Article 04.3.3.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)