Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet character
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Powers of odd primes === If <math>q=p^k</math> is an odd number <math>(\mathbb{Z}/q\mathbb{Z})^\times</math> is cyclic of order <math>\phi(q)</math>; a generator is called a [[Primitive root modulo n|primitive root]] mod <math>q</math>.<ref>There is a primitive root mod <math>p</math> which is a primitive root mod <math>p^2</math> and all higher powers of <math>p</math>. See, e.g., Landau p. 106</ref> Let <math>g_q</math> be a primitive root and for <math>(a,q)=1</math> define the function <math>\nu_q(a)</math> (the '''index''' of <math>a</math>) by :<math>a\equiv g_q^{\nu_q(a)}\pmod {q},</math> :<math>0\le\nu_q<\phi(q).</math> For <math>(ab,q)=1,\;\;a \equiv b\pmod{q}</math> if and only if <math>\nu_q(a)=\nu_q(b).</math> Since :<math>\chi(a)=\chi(g_q^{\nu_q(a)})=\chi(g_q)^{\nu_q(a)},</math> <math>\chi</math> is determined by its value at <math>g_q.</math> Let <math>\omega_q= \zeta_{\phi(q)}</math> be a primitive <math>\phi(q)</math>-th root of unity. From property 7) above the possible values of <math> \chi(g_q)</math> are <math> \omega_q, \omega_q^2, ... \omega_q^{\phi(q)}=1.</math> These distinct values give rise to <math>\phi(q)</math> Dirichlet characters mod <math>q.</math> For <math>(r,q)=1</math> define <math>\chi_{q,r}(a)</math> as :<math> \chi_{q,r}(a)= \begin{cases} 0 &\text{if } \gcd(a,q)>1\\ \omega_q^{\nu_q(r)\nu_q(a)}&\text{if } \gcd(a,q)=1. \end{cases}</math> Then for <math>(rs,q)=1</math> and all <math>a</math> and <math>b</math> :<math>\chi_{q,r}(a)\chi_{q,r}(b)=\chi_{q,r}(ab),</math> showing that <math>\chi_{q,r}</math> is a character and :<math>\chi_{q,r}(a)\chi_{q,s}(a)=\chi_{q,rs}(a),</math> which gives an explicit isomorphism <math>\widehat{(\mathbb{Z}/p^k\mathbb{Z})^\times}\cong(\mathbb{Z}/p^k\mathbb{Z})^\times.</math> ==== Examples ''m'' = 3, 5, 7, 9 ==== 2 is a primitive root mod 3. (<math>\phi(3)=2</math>) :<math>2^1\equiv 2,\;2^2\equiv2^0\equiv 1\pmod{3},</math> so the values of <math>\nu_3</math> are :<math> \begin{array}{|c|c|c|c|c|c|c|} a & 1 & 2 \\ \hline \nu_3(a) & 0 & 1\\ \end{array} </math>. The nonzero values of the characters mod 3 are :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 2 \\ \hline \chi_{3,1} & 1 & 1 \\ \chi_{3,2} & 1 & -1 \\ \end{array} </math> 2 is a primitive root mod 5. (<math>\phi(5)=4</math>) :<math>2^1\equiv 2,\;2^2\equiv 4,\;2^3\equiv 3,\;2^4\equiv2^0\equiv 1\pmod{5},</math> so the values of <math>\nu_5</math> are :<math> \begin{array}{|c|c|c|c|c|c|c|} a & 1 & 2 & 3 & 4 \\ \hline \nu_5(a) & 0 & 1 & 3 & 2 \\ \end{array} </math>. The nonzero values of the characters mod 5 are :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 2 & 3 & 4 \\ \hline \chi_{5,1} & 1 & 1 & 1 & 1 \\ \chi_{5,2} & 1 & i & -i & -1\\ \chi_{5,3} & 1 & -i & i & -1\\ \chi_{5,4} & 1 & -1 & -1 & 1\\ \end{array} </math> 3 is a primitive root mod 7. (<math>\phi(7)=6</math>) :<math>3^1\equiv 3,\;3^2\equiv 2,\;3^3\equiv 6,\;3^4\equiv 4,\;3^5\equiv 5,\;3^6\equiv3^0\equiv 1\pmod{7},</math> so the values of <math>\nu_7</math> are :<math> \begin{array}{|c|c|c|c|c|c|c|} a & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \nu_7(a) & 0 & 2 & 1 & 4 & 5 & 3 \\ \end{array} </math>. The nonzero values of the characters mod 7 are (<math>\omega=\zeta_6, \;\;\omega^3=-1</math>) :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \chi_{7,1} & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{7,2} & 1 & -\omega & \omega^2 & \omega^2 & -\omega & 1 \\ \chi_{7,3} & 1 & \omega^2 & \omega & -\omega & -\omega^2 & -1 \\ \chi_{7,4} & 1 & \omega^2 & -\omega & -\omega & \omega^2 & 1 \\ \chi_{7,5} & 1 & -\omega & -\omega^2 & \omega^2 & \omega & -1 \\ \chi_{7,6} & 1 & 1 & -1 & 1 & -1 & -1 \\ \end{array} </math>. 2 is a primitive root mod 9. (<math>\phi(9)=6</math>) :<math>2^1\equiv 2,\;2^2\equiv 4,\;2^3\equiv 8,\;2^4\equiv 7,\;2^5\equiv 5,\;2^6\equiv2^0\equiv 1\pmod{9},</math> so the values of <math>\nu_9</math> are :<math> \begin{array}{|c|c|c|c|c|c|c|} a & 1 & 2 &4 & 5&7&8 \\ \hline \nu_9(a) & 0 & 1 & 2 & 5&4&3 \\ \end{array} </math>. The nonzero values of the characters mod 9 are (<math>\omega=\zeta_6, \;\;\omega^3=-1</math>) :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 2 & 4 & 5 &7 & 8 \\ \hline \chi_{9,1} & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{9,2} & 1 & \omega & \omega^2 & -\omega^2 & -\omega & -1 \\ \chi_{9,4} & 1 & \omega^2 & -\omega & -\omega & \omega^2 & 1 \\ \chi_{9,5} & 1 & -\omega^2 & -\omega & \omega & \omega^2 & -1 \\ \chi_{9,7} & 1 & -\omega & \omega^2 & \omega^2 & -\omega & 1 \\ \chi_{9,8} & 1 & -1 & 1 & -1 & 1 & -1 \\ \end{array} </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)