Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Discrete-time Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Convolution == {{Main|Convolution theorem#Functions of a discrete variable (sequences)}} The [[convolution theorem]] for sequences is''':''' :<math>s * y\ =\ \scriptstyle{\rm DTFT}^{-1} \displaystyle \left[\scriptstyle{\rm DTFT} \displaystyle \{s\}\cdot \scriptstyle{\rm DTFT} \displaystyle \{y\}\right].</math><ref name=Proakis/>{{rp|p.297}}{{efn-la |Oppenheim and Schafer,<ref name=Oppenheim/> p 60, (2.169), and Prandoni and Vetterli,<ref name=Prandoni/> p 122, (5.21) }} An important special case is the [[circular convolution]] of sequences {{mvar|s}} and {{mvar|y}} defined by <math>s_{_N}*y,</math> where <math>s_{_N}</math> is a periodic summation. The discrete-frequency nature of <math>\scriptstyle{\rm DTFT} \displaystyle \{s_{_N}\}</math> means that the product with the continuous function <math>\scriptstyle{\rm DTFT} \displaystyle \{y\}</math> is also discrete, which results in considerable simplification of the inverse transform''':''' :<math>s_{_N} * y\ =\ \scriptstyle{\rm DTFT}^{-1} \displaystyle \left[\scriptstyle{\rm DTFT} \displaystyle \{s_{_N}\}\cdot \scriptstyle{\rm DTFT} \displaystyle \{y\}\right]\ =\ \scriptstyle{\rm DFT}^{-1} \displaystyle \left[\scriptstyle{\rm DFT} \displaystyle \{s_{_N}\}\cdot \scriptstyle{\rm DFT} \displaystyle \{y_{_N}\}\right].</math><ref name=Rabiner/><ref name=Oppenheim/>{{rp|p.548}} For {{mvar|s}} and {{mvar|y}} sequences whose non-zero duration is less than or equal to {{mvar|N}}, a final simplification is''':''' :<math>s_{_N} * y\ =\ \scriptstyle{\rm DFT}^{-1} \displaystyle \left[\scriptstyle{\rm DFT} \displaystyle \{s\}\cdot \scriptstyle{\rm DFT} \displaystyle \{y\}\right].</math> The significance of this result is explained at [[Circular convolution#Example|Circular convolution]] and [[Convolution#Fast convolution algorithms|Fast convolution algorithms]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)