Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Divergence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Cylindrical coordinates === For a vector expressed in '''local''' unit [[Cylindrical coordinate system|cylindrical coordinates]] as <math display="block">\mathbf{F} = \mathbf{e}_r F_r + \mathbf{e}_\theta F_\theta + \mathbf{e}_z F_z,</math> where {{math|'''e'''<sub>''a''</sub>}} is the unit vector in direction {{math|''a''}}, the divergence is{{refn|[http://mathworld.wolfram.com/CylindricalCoordinates.html Cylindrical coordinates] at Wolfram Mathworld}} <math display="block">\operatorname{div} \mathbf F = \nabla \cdot \mathbf{F} = \frac{1}{r} \frac{\partial}{\partial r} \left(r F_r\right) + \frac1r \frac{\partial F_\theta}{\partial\theta} + \frac{\partial F_z}{\partial z}. </math> The use of local coordinates is vital for the validity of the expression. If we consider {{math|'''x'''}} the position vector and the functions {{math|''r''('''x''')}}, {{math|''ΞΈ''('''x''')}}, and {{math|''z''('''x''')}}, which assign the corresponding '''global''' cylindrical coordinate to a vector, in general {{nowrap|<math>r(\mathbf{F}(\mathbf{x})) \neq F_r(\mathbf{x})</math>,}} {{nowrap|<math>\theta(\mathbf{F}(\mathbf{x})) \neq F_{\theta}(\mathbf{x})</math>,}} and {{nowrap|<math>z(\mathbf{F}(\mathbf{x})) \neq F_z(\mathbf{x})</math>.}} In particular, if we consider the identity function {{math|1='''F'''('''x''') = '''x'''}}, we find that: <math display="block">\theta(\mathbf{F}(\mathbf{x})) = \theta \neq F_{\theta}(\mathbf{x}) = 0.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)