Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dual basis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== For example, the [[standard basis]] vectors of <math>\R^2</math> (the [[Cartesian plane]]) are :<math> \left\{\mathbf{e}_1, \mathbf{e}_2\right\} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} </math> and the standard basis vectors of its dual space <math>(\R^2)^*</math> are :<math> \left\{\mathbf{e}^1, \mathbf{e}^2\right \} = \left\{ \begin{pmatrix} 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \end{pmatrix} \right\}\text{.} </math> In 3-dimensional [[Euclidean space]], for a given basis <math>\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}</math>, the biorthogonal (dual) basis <math>\{\mathbf{e}^1, \mathbf{e}^2, \mathbf{e}^3\}</math> can be found by formulas below: :<math> \mathbf{e}^1 = \left(\frac{\mathbf{e}_2 \times \mathbf{e}_3}{V}\right)^\mathsf{T},\ \mathbf{e}^2 = \left(\frac{\mathbf{e}_3 \times \mathbf{e}_1}{V}\right)^\mathsf{T},\ \mathbf{e}^3 = \left(\frac{\mathbf{e}_1 \times \mathbf{e}_2}{V}\right)^\mathsf{T}. </math> <!-- Maybe, this formula can illustrate, why dual basis is also called biorthogonal... --> where {{sup|T}} denotes the [[transpose]] and :<math> V \,=\, \left(\mathbf{e}_1;\mathbf{e}_2;\mathbf{e}_3\right) \,=\, \mathbf{e}_1\cdot(\mathbf{e}_2\times\mathbf{e}_3) \,=\, \mathbf{e}_2\cdot(\mathbf{e}_3\times\mathbf{e}_1) \,=\, \mathbf{e}_3\cdot(\mathbf{e}_1\times\mathbf{e}_2) </math> is the volume of the [[parallelepiped]] formed by the basis vectors <math>\mathbf{e}_1,\,\mathbf{e}_2</math> and <math>\mathbf{e}_3.</math> In general the dual basis of a basis in a finite-dimensional vector space can be readily computed as follows: given the basis <math>f_1,\ldots,f_n</math> and corresponding dual basis <math>f^1,\ldots,f^n</math> we can build matrices :<math> \begin{align} F &= \begin{bmatrix}f_1 & \cdots & f_n \end{bmatrix} \\ G &= \begin{bmatrix}f^1 & \cdots & f^n \end{bmatrix} \end{align} </math> Then the defining property of the dual basis states that :<math>G^\mathsf{T}F = I</math> Hence the matrix for the dual basis <math>G</math> can be computed as :<math>G = \left(F^{-1}\right)^\mathsf{T}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)