Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dual lattice
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Poisson summation formula== The dual lattice is used in the statement of a general Poisson summation formula. {{math theorem| '''Theorem (Poisson Summation)'''<ref name="Cohn Kumar Reiher Schürmann 2013">{{cite book | last1=Cohn | first1=Henry | last2=Kumar | first2=Abhinav | last3=Reiher | first3=Christian | last4=Schürmann | first4=Achill | title=Discrete Geometry and Algebraic Combinatorics | chapter=Formal duality and generalizations of the Poisson summation formula | series=Contemporary Mathematics | year=2014 | volume=625 | pages=123–140 | doi=10.1090/conm/625/12495 | isbn=9781470409050 | s2cid=117741906 | arxiv=1306.6796v2 }}</ref> Let <math display = "inline"> f : \mathbb{R}^n \to \mathbb{R} </math> be a [[Pathological (mathematics)|well-behaved]] function, such as a Schwartz function, and let <math display = "inline"> \hat{f} </math> denote its [[Fourier transform]]. Let <math display = "inline"> L \subseteq \mathbb{R}^n </math> be a full rank lattice. Then: :<math> \sum_{x \in L} f(x) = \frac{1}{\det(L)} \sum_{y \in L^*} \hat{f}(y) </math>. }} <!--- let's get a text reference in here, also state more general conditions --->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)