Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dyadic rational
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===In mathematics education=== In theories of childhood development of the concept of a fraction based on the work of [[Jean Piaget]], fractional numbers arising from halving and repeated halving are among the earliest forms of fractions to develop.{{r|hie-ton}} This stage of development of the concept of fractions has been called "algorithmic halving".{{r|pot-saw}} Addition and subtraction of these numbers can be performed in steps that only involve doubling, halving, adding, and subtracting integers. In contrast, addition and subtraction of more general fractions involves integer multiplication and factorization to reach a common denominator. Therefore, dyadic fractions can be easier for students to calculate with than more general fractions.{{r|wells}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)