Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elephant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Anatomy== [[File:Elephant skeleton.jpg|thumb|African bush elephant skeleton]] Elephants are the largest living terrestrial animals. The skeleton is made up of 326–351 bones.<ref name=Shoshani68 /> The vertebrae are connected by tight joints, which limit the backbone's flexibility. African elephants have 21 pairs of ribs, while Asian elephants have 19 or 20 pairs.<ref>{{cite web|author=Somgrid, C.|title=Elephant Anatomy and Biology: Skeletal system|publisher=Elephant Research and Education Center, Department of Companion Animal and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University|url=http://www.asianelephantresearch.com/about-elephant-anatomy-and-biology-p1.php#skeleton|access-date=21 September 2012|archive-url=https://web.archive.org/web/20120613191055/http://www.asianelephantresearch.com/about-elephant-anatomy-and-biology-p1.php#skeleton|archive-date=13 June 2012|url-status=dead}}</ref> The skull contains air cavities ([[Sinus (anatomy)|sinuses]]) that reduce the weight of the skull while maintaining overall strength. These cavities give the inside of the skull a [[honeycomb]]-like appearance. By contrast, the lower jaw is dense. The cranium is particularly large and provides enough room for the attachment of muscles to support the entire head.<ref name=Shoshani68>Shoshani, pp. 68–70.</ref> The skull is built to withstand great stress, particularly when fighting or using the tusks. The brain is surrounded by arches in the skull, which serve as protection.<ref>Kingdon, p. 11.</ref> Because of the size of the head, the neck is relatively short to provide better support.<ref name="evolution">{{cite journal |author=Shoshani, J. |year=1998 |title=Understanding proboscidean evolution: a formidable task |journal=Trends in Ecology and Evolution |volume=13 |issue=12 |pages=480–487 |doi=10.1016/S0169-5347(98)01491-8 |pmid=21238404|bibcode=1998TEcoE..13..480S }}</ref> Elephants are [[homeothermy|homeotherms]] and maintain their average body temperature at ~ 36 °C (97 °F), with a minimum of 35.2 °C (95.4 °F) during the cool season, and a maximum of 38.0 °C (100.4 °F) during the hot dry season.<ref>{{Cite journal|date=2018|title=Savanna elephants maintain homeothermy under African heat|url=https://link.springer.com/article/10.1007%2Fs00360-018-1170-5|journal=Journal of Comparative Physiology B|doi=10.1007/s00360-018-1170-5|last1=Mole|first1=Michael A.|last2=Rodrigues Dáraujo|first2=Shaun|last3=Van Aarde|first3=Rudi J.|last4=Mitchell|first4=Duncan|last5=Fuller|first5=Andrea|volume=188|issue=5|pages=889–897|pmid=30008137|s2cid=51626564|access-date=14 May 2021|archive-date=15 May 2021|archive-url=https://web.archive.org/web/20210515162738/https://link.springer.com/article/10.1007/s00360-018-1170-5|url-status=live|url-access=subscription}}</ref> ===Ears and eyes=== [[File:Angry elephant ears.jpg|thumb|African bush elephant with ears spread in a threat or attentive position and visible blood vessels]] Elephant ear flaps, or [[pinna (anatomy)|pinnae]], are {{convert|1|–|2|mm|in|abbr=on}} thick in the middle with a thinner tip and supported by a thicker base. They contain numerous blood vessels called [[capillary|capillaries]]. Warm blood flows into the capillaries, releasing excess heat into the environment. This effect is increased by flapping the ears back and forth. Larger ear surfaces contain more capillaries, and more heat can be released. Of all the elephants, African bush elephants live in the hottest climates and have the largest ear flaps.<ref name=Shoshani68 /><ref>{{cite journal|author=Narasimhan, A.|s2cid=121443269|year=2008|title=Why do elephants have big ear flaps?|journal=Resonance|volume=13|issue=7|pages=638–647|doi=10.1007/s12045-008-0070-5}}</ref> The [[ossicles]] are adapted for hearing low frequencies, being most sensitive at 1 [[Hertz|kHz]].<ref>{{cite journal|author1=Reuter, T.|author2=Nummela, S.|author3=Hemilä, S.|year=1998|title=Elephant hearing|journal=Journal of the Acoustical Society of America|volume=104|issue=2|pages=1122–1123|url=http://roadecology.ucdavis.edu/%5C/pdflib/Winter2005/Rodwell_Reuter_ele_ear.pdf|doi=10.1121/1.423341|pmid=9714930|bibcode=1998ASAJ..104.1122R|url-status=dead|archive-url=https://web.archive.org/web/20121207065356/http://roadecology.ucdavis.edu/pdflib/Winter2005/Rodwell_Reuter_ele_ear.pdf|archive-date=7 December 2012|df=dmy-all}}</ref> Lacking a [[lacrimal apparatus]] (tear duct), the eye relies on the [[harderian gland]] in the orbit to keep it moist. A durable [[nictitating membrane]] shields the globe. The animal's [[Field of view|field of vision]] is compromised by the location and limited mobility of the eyes.<ref name="sense">{{cite web|author=Somgrid, C.|title=Elephant Anatomy and Biology: Special sense organs|publisher=Elephant Research and Education Center, Department of Companion Animal and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University|url=http://www.asianelephantresearch.com/about-elephant-anatomy-and-biology-p4.php#Special|access-date=21 September 2012|archive-url=https://web.archive.org/web/20130729045534/http://www.asianelephantresearch.com/about-elephant-anatomy-and-biology-p4.php#Special|archive-date=29 July 2013|url-status=dead}}</ref> Elephants are [[Dichromacy|dichromats]]<ref>{{cite journal|author1=Yokoyama, S. |author2=Takenaka, N. |author3=Agnew, D. W. |author4=Shoshani, J. |year=2005|title=Elephants and human color-blind deuteranopes have identical sets of visual pigments|journal=Genetics|volume=170|issue=1|pages=335–344|doi=10.1534/genetics.104.039511|pmid=15781694|pmc=1449733}}</ref> and they can see well in dim light but not in bright light.<ref name=cognition /> ===Trunk=== {{Redirect|Elephant trunk}} [[File:African elephant warning raised trunk.jpg|thumb|right|African bush elephant with its trunk raised, a behaviour often adopted when trumpeting]] The elongated and [[Prehensility|prehensile]] trunk, or [[proboscis]], consists of both the nose and upper lip, which fuse in early [[Fetus|fetal]] development.<ref name=evolution /> This versatile appendage contains up to 150,000 separate [[muscle fascicle]]s, with no bone and little fat. These paired muscles consist of two major types: superficial (surface) and internal. The former are divided into [[Dorsoventral|dorsal, ventral]], and [[Lateral and medial|lateral]] muscles, while the latter are divided into [[Transverse plane|transverse]] and [[wikt:radiate|radiating]] muscles. The muscles of the trunk connect to a bony opening in the skull. The [[nasal septum]] consists of small elastic muscles between the nostrils, which are divided by [[cartilage]] at the base.<ref name=Shoshani74>Shoshani, pp. 74–77.</ref> A unique proboscis nerve – a combination of the [[maxillary nerve|maxillary]] and [[facial nerve]]s – lines each side of the appendage.<ref name=trunk /> As a [[muscular hydrostat]], the trunk moves through finely controlled muscle contractions, working both with and against each other.<ref name="trunk" /> Using three basic movements: bending, twisting, and longitudinal stretching or retracting, the trunk has near unlimited flexibility. Objects grasped by the end of the trunk can be moved to the mouth by curving the appendage inward. The trunk can also bend at different points by creating stiffened "pseudo-joints". The tip can be moved in a way similar to the human hand.<ref>{{cite journal|last1=Dagenais|first1=P|last2=Hensman|first2=S|last3=Haechler|first3=V|last4=Milinkovitch|first4=M. C.|year=2021|title=Elephants evolved strategies reducing the biomechanical complexity of their trunk|journal=Current Biology|volume=31|issue=21|pages=4727–4737|doi=10.1016/j.cub.2021.08.029|pmid=34428468|s2cid=237273086|doi-access=free|bibcode=2021CBio...31E4727D}}</ref> The skin is more elastic on the dorsal side of the elephant trunk than underneath; allowing the animal to stretch and coil while maintaining a strong grasp.<ref>{{cite journal|last1=Schulz|first1=A. K.|last2=Boyle|first2=M|last3=Boyle|first3=C|last4=Sordilla|first4=S|last5=Rincon|first5=C|last6=Hooper|first6=K|last7=Aubuchon|first7=C|last8=Reidenberg|first8=J. S.|last9=Higgins|first9=C|last10=Hu|first10=D. L.|year=2022|title=Skin wrinkles and folds enable asymmetric stretch in the elephant trunk|journal=Proceedings of the National Academy of Sciences|volume=119|issue=31|page=e2122563119|doi=10.1073/pnas.2122563119|doi-access=free |pmid=35858384 |pmc=9351381 |bibcode=2022PNAS..11922563S }}</ref> The flexibility of the trunk is aided by the numerous wrinkles in the skin.<ref>{{cite journal|last1=Schulz|first1=A. K.|last2=Kaufmann|first2=L. V.|last3=Reveyaz|first3=N|last4=Ritter|first4=C|last5=Hildebrandt|first5=T|last6=Brecht|first6=M|year=2024|title=Elephants develop wrinkles through both form and function|journal= Royal Society Open Science|volume=11|issue=10 |page=240851|doi=10.1098/rsos.240851|pmid=39386989 |pmc=11461087 |bibcode=2024RSOS...1140851S }}</ref> The African elephants have two finger-like extensions at the tip of the trunk that allow them to pluck small food. The Asian elephant has only one and relies more on wrapping around a food item.<ref name="Shoshani38" /> Asian elephant trunks have better [[motor coordination]].<ref name="Shoshani74" /> [[File:Asian Elephant, Royal Chitwan National Park.jpg|thumb|right|Asian elephant drinking water with trunk]] The trunk's extreme flexibility allows it to forage and wrestle other elephants with it. It is powerful enough to lift up to {{convert|350|kg|lb|abbr=on}}, but it also has the precision to crack a peanut shell without breaking the seed. With its trunk, an elephant can reach items up to {{convert|7|m|ft|abbr=on}} high and dig for water in the mud or sand below. It also uses it to clean itself.<ref name=Kingdon9>Kingdon, p. 9.</ref> Individuals may show lateral preference when grasping with their trunks: some prefer to twist them to the left, others to the right.<ref name="trunk">{{cite journal|author1=Martin, F.|author2=Niemitz C. |year=2003|title="Right-trunkers" and "left-trunkers": side preferences of trunk movements in wild Asian elephants (''Elephas maximus'')|journal=Journal of Comparative Psychology|volume=117|issue=4|pages=371–379|doi=10.1037/0735-7036.117.4.371|pmid=14717638}}</ref> Elephant trunks are capable of powerful siphoning. They can expand their nostrils by 30%, leading to a 64% greater nasal volume, and can breathe in almost 30 times faster than a human sneeze, at over {{convert|150|m/s|abbr=on}}.<ref name="Schulz">{{cite journal|author=Schulz, A. K.|author2= Ning Wu, Jia|author3= Sara Ha, S. Y.|author4= Kim, G.|year=2021|title=Suction feeding by elephants|journal= Journal of the Royal Society Interface|volume=18|issue=179|doi=10.1098/rsif.2021.0215|pmid=34062103|pmc=8169210|doi-access=free}}</ref> They suck up water, which is squirted into the mouth or over the body.<ref name=evolution /><ref name="Schulz"/> The trunk of an adult Asian elephant is capable of retaining {{convert|8.5|L|gal|abbr=on}} of water.<ref name=Shoshani74 /> They will also sprinkle dust or grass on themselves.<ref name=evolution /> When underwater, the elephant uses its trunk as a [[Submarine snorkel|snorkel]].<ref name=snorkel /> The trunk also acts as a sense organ. Its sense of smell may be four times greater than a [[bloodhound]]'s nose.<ref name=Sukumar149 /> The [[infraorbital nerve]], which makes the trunk sensitive to touch, is thicker than both the [[Optic nerve|optic]] and [[Cochlear nerve|auditory]] nerves. [[Whiskers]] grow all along the trunk, and are particularly packed at the tip, where they contribute to its tactile sensitivity. Unlike those of many mammals, such as cats and rats, elephant whiskers do not move independently ("whisk") to sense the environment; the trunk itself must move to bring the whiskers into contact with nearby objects. Whiskers grow in rows along each side on the ventral surface of the trunk, which is thought to be essential in helping elephants balance objects there, whereas they are more evenly arranged on the dorsal surface. The number and patterns of whiskers are distinctly different between species.<ref>{{Cite journal |last1=Deiringer |first1=Nora |last2=Schneeweiß |first2=Undine |last3=Kaufmann |first3=Lena V. |last4=Eigen |first4=Lennart |last5=Speissegger |first5=Celina |last6=Gerhardt |first6=Ben |last7=Holtze |first7=Susanne |last8=Fritsch |first8=Guido |last9=Göritz |first9=Frank |last10=Becker |first10=Rolf |last11=Ochs |first11=Andreas |last12=Hildebrandt |first12=Thomas |last13=Brecht |first13=Michael |date=2023-06-08 |title=The functional anatomy of elephant trunk whiskers |journal=Communications Biology |language=en |volume=6 |issue=1 |page=591 |doi=10.1038/s42003-023-04945-5 |pmid=37291455 |pmc=10250425 |issn=2399-3642}}</ref> Damaging the trunk would be detrimental to an elephant's survival,<ref name=evolution /> although in rare cases, individuals have survived with shortened ones. One trunkless elephant has been observed to graze using its lips with its hind legs in the air and balancing on its front knees.<ref name=Shoshani74 /> [[Floppy trunk syndrome]] is a condition of trunk [[paralysis]] recorded in African bush elephants and involves the degeneration of the [[Peripheral nervous system|peripheral nerves]] and muscles. The disorder has been linked to lead poisoning.<ref name="NS">{{cite magazine|url=https://www.newscientist.com/article/mg13618470.700-lead-in-lake-blamed-for-floppy-trunks-.html|title=Lead in lake blamed for floppy trunks|author=Cole, M.|date=14 November 1992|magazine=New Scientist|access-date=25 June 2009|archive-date=17 May 2008|archive-url=https://web.archive.org/web/20080517112426/http://www.newscientist.com/article/mg13618470.700-lead-in-lake-blamed-for-floppy-trunks-.html|url-status=live}}</ref> ===Teeth=== {{multiple image |align=right |direction=vertical |width=220 |image1=Loxodonta africana - Molar of an adult.JPG|caption1=Molar of an adult African bush elephant |image2=2010-kabini-tusker-bark.jpg|caption2=Asian elephant eating tree bark, using its tusks to peel it off }} Elephants usually have 26 teeth: the [[incisor]]s, known as the [[tusk]]s; 12 [[Deciduous teeth|deciduous]] [[premolar]]s; and 12 [[Molar (tooth)|molars]]. Unlike most mammals, teeth are not replaced by new ones emerging from the jaws vertically. Instead, new teeth start at the back of the mouth and push out the old ones. The first chewing tooth on each side of the jaw falls out when the elephant is two to three years old. This is followed by four more tooth replacements at the ages of four to six, 9–15, 18–28, and finally in their early 40s. The final (usually sixth) set must last the elephant the rest of its life. Elephant teeth have loop-shaped dental ridges, which are more diamond-shaped in African elephants.<ref name=Shoshani70>Shoshani, pp. 70–71.</ref> ====Tusks==== The tusks of an elephant are modified second incisors in the upper jaw. They replace deciduous [[milk teeth]] at 6–12 months of age and keep growing at about {{convert|17|cm|in|0|abbr=on}} a year. As the tusk develops, it is topped with smooth, cone-shaped [[tooth enamel|enamel]] that eventually wanes. The [[dentin]]e is known as [[ivory]] and has a [[Cross section (geometry)|cross-section]] of intersecting lines, known as "engine turning", which create diamond-shaped patterns. Being living tissue, tusks are fairly soft and about as dense as the mineral [[calcite]]. The tusk protrudes from a socket in the skull, and most of it is external. At least one-third of the tusk contains the [[Pulp (tooth)|pulp]], and some have nerves that stretch even further. Thus, it would be difficult to remove it without harming the animal. When removed, ivory will dry up and crack if not kept cool and wet. Tusks function in digging, debarking, marking, moving objects, and fighting.<ref name=Shoshani71 /> Elephants are usually right- or left-tusked, similar to humans, who are typically [[Handedness|right- or left-handed]]. The dominant, or "master" tusk, is typically more worn down, as it is shorter and blunter. For African elephants, tusks are present in both males and females and are around the same length in both sexes, reaching up to {{convert|300|cm|ftin|0|abbr=on}},<ref name=Shoshani71 /> but those of males tend to be more massive.<ref>Sukumar, p. 120</ref> In the Asian species, only the males have large tusks. Female Asians have very small tusks, or none at all.<ref name=Shoshani71>Shoshani, pp. 71–74.</ref> Tuskless males exist and are particularly common among [[Sri Lankan elephant]]s.<ref>{{cite book|author=Clutton-Brock, J.|year=1986|title=A Natural History of Domesticated Mammals|publisher=British Museum (Natural History)|page=208|isbn=978-0-521-34697-9}}</ref> Asian males can have tusks as long as Africans', but they are usually slimmer and lighter; the largest recorded was {{convert|302|cm|ftin|0|abbr=on}} long and weighed {{convert|39|kg|lb|0|abbr=on}}. Hunting for elephant ivory in Africa<ref>{{cite web|title=Elephants Evolve Smaller Tusks Due to Poaching|date=20 January 2008|publisher=Environmental News Network|url=http://www.enn.com/wildlife/article/29620|access-date=25 September 2012|archive-date=21 November 2015|archive-url=https://web.archive.org/web/20151121185117/http://www.enn.com/wildlife/article/29620|url-status=live}}</ref> and Asia<ref>{{Cite web|date=2018-11-09|title=Under poaching pressure, elephants are evolving to lose their tusks|url=https://www.nationalgeographic.com/animals/article/wildlife-watch-news-tuskless-elephants-behavior-change|url-status=dead|access-date=2021-10-28|website=[[National Geographic]]|language=en|archive-url=https://web.archive.org/web/20210303222242/https://www.nationalgeographic.com/animals/article/wildlife-watch-news-tuskless-elephants-behavior-change/ |archive-date=3 March 2021 }}</ref> has resulted in an effective [[selection pressure]] for shorter tusks<ref>{{cite news|url=https://www.telegraph.co.uk/science/science-news/3322455/Why-elephants-are-not-so-long-in-the-tusk.html|archive-url=https://web.archive.org/web/20091018192954/http://www.telegraph.co.uk/science/science-news/3322455/Why-elephants-are-not-so-long-in-the-tusk.html|url-status=dead|archive-date=18 October 2009|title=Why elephants are not so long in the tusk|last=Gray|first=R.|date=20 January 2008|work=[[The Daily Telegraph]]|access-date=27 January 2013}}</ref><ref>{{cite journal|author1=Chiyo, P. I. |author2=Obanda, V. |author3=Korir, D. K. |title=Illegal tusk harvest and the decline of tusk size in the African elephant|journal=Ecology and Evolution|year=2015|volume=5|issue=22|pages=5216–5229|doi=10.1002/ece3.1769|pmid=30151125|pmc=6102531|bibcode=2015EcoEv...5.5216C }}</ref> and tusklessness.<ref>{{cite journal|author1=Jachmann, H. |author2=Berry, P. S. M. |author3=Imae, H. |year=1995|title=Tusklessness in African elephants: a future trend|journal=African Journal of Ecology|volume=33|issue=3|pages=230–235|doi=10.1111/j.1365-2028.1995.tb00800.x|bibcode=1995AfJEc..33..230J }}</ref><ref>{{cite journal|author1=Kurt, F. |author2=Hartl, G. |author3=Tiedemann, R. |year=1995|title=Tuskless bulls in Asian elephant ''Elephas maximus''. History and population genetics of a man-made phenomenon.|journal=Acta Theriol.|volume=40|pages=125–144|doi=10.4098/at.arch.95-51|doi-access=free}}</ref> === Skin === [[File:Elephant Skin (4526726581).jpg|thumb|Asian elephant skin]] An elephant's skin is generally very tough, at {{convert|2.5|cm|in|0|abbr=on}} thick on the back and parts of the head. The skin around the mouth, [[anus]], and inside of the ear is considerably thinner. Elephants are typically grey, but African elephants look brown or reddish after rolling in coloured mud. Asian elephants have some patches of depigmentation, particularly on the head. Calves have brownish or reddish hair, with the head and back being particularly hairy. As elephants mature, their hair darkens and becomes sparser, but dense concentrations of hair and bristles remain on the tip of the tail and parts of the head and genitals. Normally, the skin of an Asian elephant is covered with more hair than its African counterpart.<ref name=Shoshani66>Shoshani, pp. 66–67.</ref> Their hair is thought to help them lose heat in their hot environments.<ref name="Elephanthair">{{cite journal |last1=Myhrvold |first1=C. L. |last2=Stone |first2=H. A. |last3=Bou-Zeid |first3=E. |title=What Is the Use of Elephant Hair? |journal=PLOS ONE |date=10 October 2012 |volume=7 |issue=10 |page=e47018 |doi=10.1371/journal.pone.0047018|pmid=23071700 |pmc=3468452 |bibcode=2012PLoSO...747018M |doi-access=free }}</ref> Although tough, an elephant's skin is very sensitive and requires [[Wallowing|mud baths]] to maintain moisture and protection from burning and insect bites. After bathing, the elephant will usually use its trunk to blow dust onto its body, which dries into a protective crust. Elephants have difficulty releasing heat through the skin because of their low [[surface-area-to-volume ratio]], which is many times smaller than that of a human. They have even been observed lifting up their legs to expose their soles to the air.<ref name=Shoshani66 /> Elephants only have [[sweat gland]]s between the toes,<ref>{{cite journal|last1=Lamps|first1=L. W.|last2=Smoller|first2=B. R.|last3=Rasmussen|first3=L. E. L.|last4=Slade|first4=B. E.|last5=Fritsch|first5=G|last6=Godwin|first6=T. E.|year=2001|title=Characterization of interdigital glands in the Asian elephant (Elephas maximus)|journal=Research in Veterinary Science|volume=71|issue=3|pages=197–200|doi=10.1053/rvsc.2001.0508|pmid=11798294 }}</ref> but the skin allows water to disperse and evaporate, cooling the animal.<ref>{{Cite journal|date=1984|title=Do elephants need to sweat?|journal=Journal of Zoology|doi=10.1080/02541858.1984.11447892|last1=Wright|first1=P. G.|last2=Luck|first2=C. P.|volume=19|issue=4|pages=270–274|doi-access=free}}</ref><ref>{{Cite journal|date=1970|title=The epidermis and its keratinisation in the African Elephant (Loxodonta Africana)|journal=Zoologica Africana|doi=10.1080/00445096.1970.11447400|doi-access=free|last1=Spearman|first1=R. I. C.|volume=5|issue=2|pages=327–338}}</ref> In addition, cracks in the skin may reduce dehydration and allow for increased thermal regulation in the long term.<ref>{{Cite journal|date=2018|title=Locally-curved geometry generates bending cracks in the African elephant skin|journal=Nature Communications|doi=10.1038/s41467-018-06257-3|doi-access=free|last1=Martins|first1=António F.|last2=Bennett|first2=Nigel C.|last3=Clavel|first3=Sylvie|last4=Groenewald|first4=Herman|last5=Hensman|first5=Sean|last6=Hoby|first6=Stefan|last7=Joris|first7=Antoine|last8=Manger|first8=Paul R.|last9=Milinkovitch|first9=Michel C.|volume=9|issue=1|page=3865|pmid=30279508|pmc=6168576|bibcode=2018NatCo...9.3865M}}</ref> === Legs, locomotion, and posture === {{multiple image |align=right |direction=vertical |width=220 |image1=Desert elephant (Loxodonta africana) feet.jpg|caption1=Front feet of bush elephant |image2=Elephant Walking animated.gif|caption2=An Asian elephant walking}} To support the animal's weight, an elephant's limbs are positioned more vertically under the body than in most other mammals. The long bones of the limbs have [[cancellous bone]]s in place of [[medullary cavity|medullary cavities]]. This strengthens the bones while still allowing [[haematopoiesis]] (blood cell creation).<ref name=Shoshani69>Shoshani, pp. 69–70.</ref> Both the front and hind limbs can support an elephant's weight, although 60% is borne by the front.<ref name="cushion">{{cite journal|author1=Weissengruber, G. E. |author2=Egger, G. F. |author3=Hutchinson, J. R. |author4=Groenewald, H. B. |author5=Elsässer, L. |author6=Famini, D. |author7=Forstenpointner, G. |year=2006|title=The structure of the cushions in the feet of African elephants (''Loxodonta africana'')|journal=Journal of Anatomy|volume=209|issue=6|pages=781–792|doi=10.1111/j.1469-7580.2006.00648.x|pmid=17118065|pmc=2048995}}</ref> The position of the limbs and leg bones allows an elephant to stand still for extended periods of time without tiring. Elephants are incapable of turning their [[Manus (anatomy)|manus]] as the [[ulna]] and [[Radius (bone)|radius]] of the front legs are secured in [[pronation]].<ref name=Shoshani69 /> Elephants may also lack the [[Pronator quadratus muscle|pronator quadratus]] and [[Pronator teres muscle|pronator teres]] muscles or have very small ones.<ref>Shoshani, p. 74.</ref> The circular feet of an elephant have soft tissues, or "cushion pads" beneath the manus or [[Pes (anatomy)|pes]], which allow them to bear the animal's great mass.<ref name=cushion /> They appear to have a [[Sesamoid bone|sesamoid]], an extra "toe" similar in placement to a [[giant panda]]'s extra "thumb", that also helps in weight distribution.<ref>{{cite journal|last1=Hutchinson|first1=J. R.|last2=Delmer|first2=C|last3=Miller|first3=C. E.|last4=Hildebrandt|first4=T|last5=Pitsillides|first5=A. A.|last6=Boyde|first6=A|year=2011|title=From flat foot to fat foot: structure, ontogeny, function, and evolution of elephant "sixth toes"|journal=Science|volume=334|issue=6063|pages=1699–1703|doi=10.1126/science.1211437|pmid=22194576 |bibcode=2011Sci...334R1699H |s2cid=206536505 |url=https://researchonline.rvc.ac.uk/id/eprint/5612/1/5612.pdf }}</ref> As many as five toenails can be found on both the front and hind feet.<ref name=Shoshani38 /> Elephants can move both forward and backward, but are incapable of [[trotting]], [[jumping]], or [[Horse gait|galloping]]. They can move on land only by walking or [[Ambling gait|ambling]]: a faster gait similar to running.<ref name=Shoshani69 /><ref name="kinetics"/> In walking, the legs act as pendulums, with the hips and shoulders moving up and down while the foot is planted on the ground. The fast gait does not meet all the criteria of running, since there is no point where all the feet are off the ground, although the elephant uses its legs much like other running animals, and can move faster by quickening its stride. Fast-moving elephants appear to 'run' with their front legs, but 'walk' with their hind legs and can reach a top speed of {{convert|25|km/h|abbr=on}}. At this speed, most other [[Quadrupedalism|quadrupeds]] are well into a gallop, even accounting for leg length. Spring-like kinetics could explain the difference between the motion of elephants and other animals.<ref name="kinetics">{{cite journal |author1 = Hutchinson, J. R.| author2 = Schwerda, D.| author3 = Famini, D. J.| author4 = Dale, R. H.| author5 = Fischer, M. S.| author6 = Kram, R.|year=2006|title=The locomotor kinematics of Asian and African elephants: changes with speed and size|journal=Journal of Experimental Biology|volume=209|issue=19|pages=3812–3827|pmid=16985198 |doi = 10.1242/jeb.02443|doi-access=free}}</ref><ref name="ReferenceA">{{cite journal |author1=Hutchinson, J. R. |author2=Famini, D. |author3=Lair, R. |author4=Kram, R. |s2cid=4403723 |year=2003 |title=Biomechanics: Are fast-moving elephants really running? |journal=Nature |volume=422 |pages=493–494 |doi=10.1038/422493a |pmid=12673241 |issue=6931 |bibcode=2003Natur.422..493H |url=http://researchonline.rvc.ac.uk/id/eprint/124/ |access-date=3 January 2023 |archive-date=9 August 2022 |archive-url=https://web.archive.org/web/20220809231054/https://researchonline.rvc.ac.uk/id/eprint/124/ |url-status=live }}</ref> The cushion pads expand and contract, and reduce both the pain and noise that would come from a very heavy animal moving.<ref name=cushion /> Elephants are capable swimmers: they can swim for up to six hours while completely waterborne, moving at {{convert|2.1|km/h|0|abbr=on}} and traversing up to {{convert|48|km|mi|abbr=on}} continuously.<ref>Shoshani, p. 60.</ref> === Internal systems === The brain of an elephant weighs {{convert|4.5|–|5.5|kg|lb|0|abbr=on}} compared to {{convert|1.6|kg|lb|0|abbr=on}} for a human brain.<ref name=Shoshani78 /> It is the largest of all terrestrial mammals.<ref name="posse">{{cite book|author=O'Connell, Caitlin|title="Elephant Don: The Politics of a Pachyderm Posse"|date=20 July 2016|publisher=University of Chicago Press |isbn=9780226380056|url=https://books.google.com/books?id=2ZElEAAAQBAJ&q=Elephants+have+the+largest+temporal+lobe+relative+to+the+size+of+its+body+among+any+land+mammals&pg=PA102|access-date=16 September 2022|archive-date=21 March 2023|archive-url=https://web.archive.org/web/20230321084756/https://books.google.com/books?id=2ZElEAAAQBAJ&q=Elephants+have+the+largest+temporal+lobe+relative+to+the+size+of+its+body+among+any+land+mammals&pg=PA102|url-status=live}}</ref> While the elephant brain is larger overall, it is [[Encephalization quotient|proportionally smaller than the human brain]]. At birth, an elephant's brain already weighs 30–40% of its adult weight. The [[cerebrum]] and [[cerebellum]] are well developed, and the [[temporal lobe]]s are so large that they bulge out laterally.<ref name=Shoshani78 /> Their temporal lobes are proportionally larger than those of other animals, including humans.<ref name=posse /> The throat of an elephant appears to contain a pouch where it can store water for later use.<ref name=evolution /> The [[larynx]] of the elephant is the largest known among mammals. The [[vocal fold]]s are anchored close to the [[epiglottis]] base. When comparing an elephant's vocal folds to those of a human, an elephant's are proportionally longer, thicker, with a greater cross-sectional area. In addition, they are located further up the vocal tract with an acute slope.<ref name="vibratorypatterns">{{cite journal|author1= Herbest, C. T.| author2 = Švec, J. G.| author3 = Lohscheller, J.| author4 = Frey, R.| author5 = Gumpenberger, M.| author6 = Stoeger, A.| author7 = Fitch, W. T.|year=2013|title= Complex Vibratory Patterns in an Elephant Larynx|journal= Journal of Experimental Biology|volume=216|issue=21|pages=4054–4064|doi=10.1242/jeb.091009 |pmid=24133151|doi-access=free}}</ref> [[File:Em - Loxodonta africana heart - GMZ 2.jpg|thumb|right|African elephant heart in a jar]] The heart of an elephant weighs {{convert|12|–|21|kg|lb|abbr=on}}. Its [[Heart#Location and shape|apex]] has two pointed ends, an unusual trait among mammals.<ref name=Shoshani78 /> In addition, the [[Ventricle (heart)|ventricles]] of the heart split towards the top, a trait also found in sirenians.<ref name="Marshall Cavendish">{{cite book| author=Anon|title=Mammal Anatomy: An Illustrated Guide |year=2010 |publisher=Marshall Cavendish |isbn=978-0-7614-7882-9 |page=59}}</ref> When upright, the elephant's heart beats around 28 beats per minute and actually speeds up to 35 beats when it lies down.<ref name=Shoshani78/> The blood vessels are thick and wide and can hold up under high blood pressure.<ref name="Marshall Cavendish"/> The lungs are attached to the [[Thoracic diaphragm|diaphragm]], and breathing relies less on the expanding of the ribcage.<ref name=Shoshani78>Shoshani, pp. 78–79.</ref> [[Connective tissue]] exists in place of the [[pleural cavity]]. This may allow the animal to deal with the pressure differences when its body is underwater and its trunk is breaking the surface for air.<ref name="snorkel">{{cite journal|author=West, J. B.|s2cid=27321751|year=2002|title=Why doesn't the elephant have a pleural space?|journal=Physiology|volume=17|issue=2|pages=47–50|pmid=11909991|doi=10.1152/nips.01374.2001|doi-access=free}}</ref> Elephants breathe mostly with the trunk but also with the mouth. They have a [[hindgut fermentation]] system, and their large and small intestines together reach {{convert|35|m|ft|0|abbr=on}} in length. Less than half of an elephant's food intake gets digested, despite the process lasting a day.<ref name=Shoshani78 /> An elephant's bladder can store up to 18 litres of urine<ref>{{Cite journal |last1=Yang |first1=Patricia J. |last2=Pham |first2=Jonathan |last3=Choo |first3=Jerome |last4=Hu |first4=David L. |date=2014-08-19 |title=Duration of urination does not change with body size |journal=Proceedings of the National Academy of Sciences |language=en |volume=111 |issue=33 |pages=11932–11937 |doi=10.1073/pnas.1402289111 |doi-access=free |issn=0027-8424 |pmc=4143032 |pmid=24969420|bibcode=2014PNAS..11111932Y }}</ref> and its [[kidneys]] can produce more than 50 [[litre]]s of urine per day.<ref name="FowlerMikota2006" /> ===Sex characteristics=== {{anchor|Sex organs}}{{multiple image|image1=Penis asiatischer Elefant.JPG|image2=Vulve d'éléphante.jpg|perrow=2|total_width=220px|footer=Asian elephant penis and vulva}}A male elephant's testes, like other [[Afrotheria]],<ref name="Sharma Lehmann Stuckas Funke ">{{cite journal | last1=Sharma | first1=Virag | last2=Lehmann | first2=Thomas | last3=Stuckas | first3=Heiko | last4=Funke | first4=Liane | last5=Hiller | first5=Michael | title=Loss of RXFP2 and INSL3 genes in Afrotheria shows that testicular descent is the ancestral condition in placental mammals | journal=PLOS Biology | volume=16 | issue=6 | date=2018 | issn=1545-7885 | doi=10.1371/journal.pbio.2005293 | page=e2005293 | pmid=29953435 | pmc=6023123 | doi-access=free }}</ref> are internally located near the kidneys.<ref>{{cite journal | author1 = Short, R. V. | author2 = Mann, T. | author3 = Hay, Mary F. | year = 1967 | title = Male reproductive organs of the African elephant, Loxodonta africana | url = http://www.reproduction-online.org/content/13/3/517.full.pdf | journal = Journal of Reproduction and Fertility | volume = 13 | issue = 3 | pages = 517–536 | doi = 10.1530/jrf.0.0130517 | pmid = 6029179 | doi-access = free | access-date = 10 July 2017 | archive-date = 20 July 2018 | archive-url = https://web.archive.org/web/20180720144623/http://www.reproduction-online.org/content/13/3/517.full.pdf | url-status = live }}</ref> The [[penis]] can be as long as {{convert|100|cm|in|0|abbr=on}} with a {{convert|16|cm|in|0|abbr=on}} wide base. It curves to an 'S' when fully erect and has an [[External urethral orifice (male)|orifice]] shaped like a Y. The female's [[clitoris]] may be {{convert|40|cm|in|0|abbr=on}}. The [[vulva]] is found lower than in other herbivores, between the hind legs instead of under the tail. Determining pregnancy status can be difficult due to the animal's large belly. The female's [[mammary gland]]s occupy the space between the front legs, which puts the suckling calf within reach of the female's trunk.<ref name=Shoshani78 /> Elephants have a unique organ, the [[Temporin|temporal gland]], located on both sides of the head. This organ is associated with sexual behaviour, and males secrete a fluid from it when in [[musth]].<ref>Shoshani, p. 80.</ref> Females have also been observed with these secretions.<ref name=Sukumar149>Sukumar, p. 149.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)