Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Equivalence class
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Invariants== If <math>\,\sim\,</math> is an equivalence relation on <math>X,</math> and <math>P(x)</math> is a property of elements of <math>X</math> such that whenever <math>x \sim y,</math> <math>P(x)</math> is true if <math>P(y)</math> is true, then the property <math>P</math> is said to be an [[Invariant (mathematics)|invariant]] of <math>\,\sim\,,</math> or [[well-defined]] under the relation <math>\,\sim.</math> A frequent particular case occurs when <math>f</math> is a function from <math>X</math> to another set <math>Y</math>; if <math>f\left(x_1\right) = f\left(x_2\right)</math> whenever <math>x_1 \sim x_2,</math> then <math>f</math> is said to be {{em|class invariant under}} <math>\,\sim\,,</math> or simply {{em|invariant under}} <math>\,\sim.</math> This occurs, for example, in the [[character theory]] of finite groups. Some authors use "compatible with <math>\,\sim\,</math>" or just "respects <math>\,\sim\,</math>" instead of "invariant under <math>\,\sim\,</math>". Any [[Function (mathematics)|function]] <math>f : X \to Y</math> is ''class invariant under'' <math>\,\sim\,,</math> according to which <math>x_1 \sim x_2</math> if and only if <math>f\left(x_1\right) = f\left(x_2\right).</math> The equivalence class of <math>x</math> is the set of all elements in <math>X</math> which get mapped to <math>f(x),</math> that is, the class <math>[x]</math> is the [[inverse image]] of <math>f(x).</math> This equivalence relation is known as the [[Kernel of a function|kernel]] of <math>f.</math> More generally, a function may map equivalent arguments (under an equivalence relation <math>\sim_X</math> on <math>X</math>) to equivalent values (under an equivalence relation <math>\sim_Y</math> on <math>Y</math>). Such a function is a [[morphism]] of sets equipped with an equivalence relation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)