Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Estimation theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Unknown constant in additive white Gaussian noise=== Consider a received [[discrete signal]], <math>x[n]</math>, of <math>N</math> [[statistical independence|independent]] [[statistical sample|samples]] that consists of an unknown constant <math>A</math> with [[additive white Gaussian noise]] (AWGN) <math>w[n]</math> with zero [[mean]] and known [[variance]] <math>\sigma^2</math> (''i.e.'', <math>\mathcal{N}(0, \sigma^2)</math>). Since the variance is known then the only unknown parameter is <math>A</math>. The model for the signal is then <math display="block">x[n] = A + w[n] \quad n=0, 1, \dots, N-1</math> Two possible (of many) estimators for the parameter <math>A</math> are: * <math>\hat{A}_1 = x[0]</math> * <math>\hat{A}_2 = \frac{1}{N} \sum_{n=0}^{N-1} x[n]</math> which is the [[sample mean]] Both of these estimators have a [[mean]] of <math>A</math>, which can be shown through taking the [[expected value]] of each estimator <math display="block">\mathrm{E}\left[\hat{A}_1\right] = \mathrm{E}\left[ x[0] \right] = A</math> and <math display="block"> \mathrm{E}\left[ \hat{A}_2 \right] = \mathrm{E}\left[ \frac{1}{N} \sum_{n=0}^{N-1} x[n] \right] = \frac{1}{N} \left[ \sum_{n=0}^{N-1} \mathrm{E}\left[ x[n] \right] \right] = \frac{1}{N} \left[ N A \right] = A </math> At this point, these two estimators would appear to perform the same. However, the difference between them becomes apparent when comparing the variances. <math display="block">\mathrm{var} \left( \hat{A}_1 \right) = \mathrm{var} \left( x[0] \right) = \sigma^2</math> and <math display="block"> \mathrm{var} \left( \hat{A}_2 \right) = \mathrm{var} \left( \frac{1}{N} \sum_{n=0}^{N-1} x[n] \right) \overset{\text{independence}}{=} \frac{1}{N^2} \left[ \sum_{n=0}^{N-1} \mathrm{var} (x[n]) \right] = \frac{1}{N^2} \left[ N \sigma^2 \right] = \frac{\sigma^2}{N} </math> It would seem that the sample mean is a better estimator since its variance is lower for every ''N'' > 1. ====Maximum likelihood==== {{main|Maximum likelihood}} Continuing the example using the [[maximum likelihood]] estimator, the [[probability density function]] (pdf) of the noise for one sample <math>w[n]</math> is <math display="block">p(w[n]) = \frac{1}{\sigma \sqrt{2 \pi}} \exp\left(- \frac{1}{2 \sigma^2} w[n]^2 \right)</math> and the probability of <math>x[n]</math> becomes (<math>x[n]</math> can be thought of a <math>\mathcal{N}(A, \sigma^2)</math>) <math display="block">p(x[n]; A) = \frac{1}{\sigma \sqrt{2 \pi}} \exp\left(- \frac{1}{2 \sigma^2} (x[n] - A)^2 \right)</math> By [[statistical independence|independence]], the probability of <math>\mathbf{x}</math> becomes <math display="block"> p(\mathbf{x}; A) = \prod_{n=0}^{N-1} p(x[n]; A) = \frac{1}{\left(\sigma \sqrt{2\pi}\right)^N} \exp\left(- \frac{1}{2 \sigma^2} \sum_{n=0}^{N-1}(x[n] - A)^2 \right) </math> Taking the [[natural logarithm]] of the pdf <math display="block"> \ln p(\mathbf{x}; A) = -N \ln \left(\sigma \sqrt{2\pi}\right) - \frac{1}{2 \sigma^2} \sum_{n=0}^{N-1}(x[n] - A)^2 </math> and the maximum likelihood estimator is <math display="block">\hat{A} = \arg \max \ln p(\mathbf{x}; A)</math> Taking the first [[derivative]] of the log-likelihood function <math display="block"> \frac{\partial}{\partial A} \ln p(\mathbf{x}; A) = \frac{1}{\sigma^2} \left[ \sum_{n=0}^{N-1}(x[n] - A) \right] = \frac{1}{\sigma^2} \left[ \sum_{n=0}^{N-1}x[n] - N A \right] </math> and setting it to zero <math display="block"> 0 = \frac{1}{\sigma^2} \left[ \sum_{n=0}^{N-1}x[n] - N A \right] = \sum_{n=0}^{N-1}x[n] - N A </math> This results in the maximum likelihood estimator <math display="block">\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1}x[n]</math> which is simply the sample mean. From this example, it was found that the sample mean is the maximum likelihood estimator for <math>N</math> samples of a fixed, unknown parameter corrupted by AWGN. ====Cramér–Rao lower bound==== {{further|Cramér–Rao bound}} To find the [[Cramér–Rao lower bound]] (CRLB) of the sample mean estimator, it is first necessary to find the [[Fisher information]] number <math display="block"> \mathcal{I}(A) = \mathrm{E} \left( \left[ \frac{\partial}{\partial A} \ln p(\mathbf{x}; A) \right]^2 \right) = -\mathrm{E} \left[ \frac{\partial^2}{\partial A^2} \ln p(\mathbf{x}; A) \right] </math> and copying from above <math display="block"> \frac{\partial}{\partial A} \ln p(\mathbf{x}; A) = \frac{1}{\sigma^2} \left[ \sum_{n=0}^{N-1}x[n] - N A \right] </math> Taking the second derivative <math display="block"> \frac{\partial^2}{\partial A^2} \ln p(\mathbf{x}; A) = \frac{1}{\sigma^2} (- N) = \frac{-N}{\sigma^2} </math> and finding the negative expected value is trivial since it is now a deterministic constant <math> -\mathrm{E} \left[ \frac{\partial^2}{\partial A^2} \ln p(\mathbf{x}; A) \right] = \frac{N}{\sigma^2} </math> Finally, putting the Fisher information into <math display="block"> \mathrm{var}\left( \hat{A} \right) \geq \frac{1}{\mathcal{I}} </math> results in <math display="block"> \mathrm{var}\left( \hat{A} \right) \geq \frac{\sigma^2}{N} </math> Comparing this to the variance of the sample mean (determined previously) shows that the sample mean is ''equal to'' the Cramér–Rao lower bound for all values of <math>N</math> and <math>A</math>. In other words, the sample mean is the (necessarily unique) [[efficient estimator]], and thus also the [[minimum variance unbiased estimator]] (MVUE), in addition to being the [[maximum likelihood]] estimator.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)