Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler's three-body problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Mathematical solutions== ===Original Euler problem=== In the original Euler problem, the two centers of force acting on the particle are assumed to be fixed in space; let these centers be located along the ''x''-axis at ±''a''. The particle is likewise assumed to be confined to a fixed plane containing the two centers of force. The potential energy of the particle in the field of these centers is given by :<math> V(x, y) = \frac{-\mu_1}{\sqrt{\left( x - a \right)^2 + y^2}} - \frac{\mu_2}{\sqrt{\left( x + a \right)^2 + y^2}} . </math> where the proportionality constants μ<sub>1</sub> and μ<sub>2</sub> may be positive or negative. The two centers of attraction can be considered as the foci of a set of ellipses. If either center were absent, the particle would move on one of these ellipses, as a solution of the [[Kepler problem]]. Therefore, according to [[Bonnet's theorem]], the same ellipses are the solutions for the Euler problem. Introducing [[elliptic coordinates]], :<math> \,x = \,a \cosh \xi \cos \eta, </math> :<math> \,y = \,a \sinh \xi \sin \eta, </math> the potential energy can be written as :<math> \begin{align} V(\xi, \eta) & = \frac{-\mu_{1}}{a\left( \cosh \xi - \cos \eta \right)} - \frac{\mu_{2}}{a\left( \cosh \xi + \cos \eta \right)} \\[8pt] & = \frac{-\mu_{1} \left( \cosh \xi + \cos \eta \right) - \mu_{2} \left( \cosh \xi - \cos \eta \right)}{a\left( \cosh^{2} \xi - \cos^{2} \eta \right)}, \end{align} </math> and the kinetic energy as :<math> T = \frac{ma^{2}}{2} \left( \cosh^{2} \xi - \cos^{2} \eta \right) \left( \dot{\xi}^{2} + \dot{\eta}^{2} \right). </math> This is a [[Liouville dynamical system]] if ξ and η are taken as φ<sub>1</sub> and φ<sub>2</sub>, respectively; thus, the function ''Y'' equals :<math> \,Y = \cosh^{2} \xi - \cos^{2} \eta </math> and the function ''W'' equals :<math> W = -\mu_{1} \left( \cosh \xi + \cos \eta \right) - \mu_{2} \left( \cosh \xi - \cos \eta \right). </math> Using the general solution for a [[Liouville dynamical system]],<ref name="liouville_1849">{{cite journal | author = Liouville J | year = 1849 | title = Mémoire sur l'intégration des équations différentielles du mouvement d'un nombre quelconque de points matériels | journal = Journal de Mathématiques Pures et Appliquées | volume = 14 | pages = 257–299 | url = http://visualiseur.bnf.fr/ConsulterElementNum?O=NUMM-16393&Deb=263&Fin=305&E=PDF| author-link = Joseph Liouville }}</ref> one obtains :<math> \frac{ma^{2}}{2} \left( \cosh^{2} \xi - \cos^{2} \eta \right)^{2} \dot{\xi}^{2} = E \cosh^{2} \xi + \left( \frac{\mu_{1} + \mu_{2}}{a} \right) \cosh \xi - \gamma </math> :<math> \frac{ma^{2}}{2} \left( \cosh^{2} \xi - \cos^{2} \eta \right)^{2} \dot{\eta}^{2} = -E \cos^{2} \eta + \left( \frac{\mu_{1} - \mu_{2}}{a} \right) \cos \eta + \gamma </math> Introducing a parameter ''u'' by the formula :<math> du = \frac{d\xi}{\sqrt{E \cosh^2 \xi + \left( \frac{\mu_1 + \mu_2}{a} \right) \cosh \xi - \gamma}} = \frac{d\eta}{\sqrt{-E \cos^2 \eta + \left( \frac{\mu_1 - \mu_2}{a} \right) \cos \eta + \gamma}}, </math> gives the [[parametric solution]] :<math> u = \int \frac{d\xi}{\sqrt{E \cosh^{2} \xi + \left( \frac{\mu_{1} + \mu_{2}}{a} \right) \cosh \xi - \gamma}} = \int \frac{d\eta}{\sqrt{-E \cos^{2} \eta + \left( \frac{\mu_{1} - \mu_{2}}{a} \right) \cos \eta + \gamma}}. </math> Since these are [[elliptic integral]]s, the coordinates ξ and η can be expressed as elliptic functions of ''u''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)